首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   519篇
  免费   24篇
  国内免费   1篇
  2023年   9篇
  2022年   14篇
  2021年   26篇
  2020年   10篇
  2019年   17篇
  2018年   23篇
  2017年   14篇
  2016年   24篇
  2015年   37篇
  2014年   33篇
  2013年   48篇
  2012年   41篇
  2011年   36篇
  2010年   41篇
  2009年   32篇
  2008年   36篇
  2007年   31篇
  2006年   24篇
  2005年   11篇
  2004年   14篇
  2003年   9篇
  2002年   9篇
  1998年   1篇
  1994年   1篇
  1985年   1篇
  1981年   1篇
  1974年   1篇
排序方式: 共有544条查询结果,搜索用时 15 毫秒
1.
2.
Singh  Ashutosh  Singh  Rahul Soloman  Sarma  Phulen  Batra  Gitika  Joshi  Rupa  Kaur  Hardeep  Sharma  Amit Raj  Prakash  Ajay  Medhi  Bikash 《中国病毒学》2020,35(3):290-304
The recent outbreak of coronavirus disease(COVID-19) caused by the novel severe acute respiratory syndrome coronavirus 2(SARS-CoV-2) has already affected a large population of the world. SARS-CoV-2 belongs to the same family of severe acute respiratory syndrome coronavirus(SARS-CoV) and Middle East respiratory syndrome coronavirus(MERSCoV). COVID-19 has a complex pathology involving severe acute respiratory infection, hyper-immune response, and coagulopathy. At present, there is no therapeutic drug or vaccine approved for the disease. There is an urgent need for an ideal animal model that can reflect clinical symptoms and underlying etiopathogenesis similar to COVID-19 patients which can be further used for evaluation of underlying mechanisms, potential vaccines, and therapeutic strategies. The current review provides a paramount insight into the available animal models of SARS-CoV-2, SARS-CoV, and MERS-CoV for the management of the diseases.  相似文献   
3.
4.
Stop codon read-through (SCR) is a process of continuation of translation beyond a stop codon. This phenomenon, which occurs only in certain mRNAs under specific conditions, leads to a longer isoform with properties different from that of the canonical isoform. MTCH2, which encodes a mitochondrial protein that regulates mitochondrial metabolism, was selected as a potential read-through candidate based on evolutionary conservation observed in the proximal region of its 3′ UTR. Here, we demonstrate translational read-through across two evolutionarily conserved, in-frame stop codons of MTCH2 using luminescence- and fluorescence-based assays, and by analyzing ribosome-profiling and mass spectrometry (MS) data. This phenomenon generates two isoforms, MTCH2x and MTCH2xx (single- and double-SCR products, respectively), in addition to the canonical isoform MTCH2, from the same mRNA. Our experiments revealed that a cis-acting 12-nucleotide sequence in the proximal 3′ UTR of MTCH2 is the necessary signal for SCR. Functional characterization showed that MTCH2 and MTCH2x were localized to mitochondria with a long t1/2 (>36 h). However, MTCH2xx was found predominantly in the cytoplasm. This mislocalization and its unique C terminus led to increased degradation, as shown by greatly reduced t1/2 (<1 h). MTCH2 read-through–deficient cells, generated using CRISPR-Cas9, showed increased MTCH2 expression and, consistent with this, decreased mitochondrial membrane potential. Thus, double-SCR of MTCH2 regulates its own expression levels contributing toward the maintenance of normal mitochondrial membrane potential.  相似文献   
5.
6.
7.
8.
9.
Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) based on three-dimensional quantitative structure-activity relationship (3D-QSAR) studies were conducted on a series (44 compounds) of diaryloxy-methano-phenanthrene derivatives as potent antitubercular agents. The best predictions were obtained with a CoMFA standard model (q (2)=0.625, r (2)=0.994) and with CoMSIA combined steric, electrostatic, and hydrophobic fields (q (2)=0.486, r (2)=0.986). Both models were validated by a test set of seven compounds and gave satisfactory predictive r (2) values of 0.999 and 0.745, respectively. CoMFA and CoMSIA contour maps were used to analyze the structural features of the ligands to account for the activity in terms of positively contributing physicochemical properties: steric, electrostatic, and hydrophobic fields. The information obtained from CoMFA and CoMSIA 3-D contour maps can be used for further design of phenanthrene-based analogs as anti-TB agents. The resulting contour maps, produced by the best CoMFA and CoMSIA models, were used to identify the structural features relevant to the biological activity in this series of analogs. Further analysis of these interaction-field contour maps also showed a high level of internal consistency. This study suggests that introduction of bulky and highly electronegative groups on the basic amino side chain along with decreasing steric bulk and electronegativity on the phenanthrene ring might be suitable for designing better antitubercular agents.  相似文献   
10.
The protozoan parasite, Trypanosoma cruzi, causes severe morbidity and mortality in afflicted individuals. Approximately 30% of T. cruzi infected individuals present with cardiac pathology. The invasive forms of the parasite are carried in the vascular system to infect other cells of the body. During transportation, the molecular mechanisms by which the parasite signals and interact with host endothelial cells (EC) especially heart endothelium is currently unknown. The parasite increases host thrombospondin-1 (TSP1) expression and activates the Wnt/β-catenin and hippo signaling pathways during the early phase of infection. The links between TSP1 and activation of the signaling pathways and their impact on parasite infectivity during the early phase of infection remain unknown. To elucidate the significance of TSP1 function in YAP/β-catenin colocalization and how they impact parasite infectivity during the early phase of infection, we challenged mouse heart endothelial cells (MHEC) from wild type (WT) and TSP1 knockout mice with T. cruzi and evaluated Wnt signaling, YAP/β-catenin crosstalk, and how they affect parasite infection. We found that in the absence of TSP1, the parasite induced the expression of Wnt-5a to a maximum at 2 h (1.73±0.13), P< 0.001 and enhanced the level of phosphorylated glycogen synthase kinase 3β at the same time point (2.99±0.24), P<0.001. In WT MHEC, the levels of Wnt-5a were toned down and the level of p-GSK-3β was lowest at 2 h (0.47±0.06), P< 0.01 compared to uninfected control. This was accompanied by a continuous significant increase in the nuclear colocalization of β-catenin/YAP in TSP1 KO MHEC with a maximum Pearson correlation coefficient of (0.67±0.02), P< 0.05 at 6 h. In WT MHEC, the nuclear colocalization of β-catenin/YAP remained steady and showed a reduction at 6 h (0.29±0.007), P< 0.05. These results indicate that TSP1 plays an important role in regulating β-catenin/YAP colocalization during the early phase of T. cruzi infection. Importantly, dysregulation of this crosstalk by pre-incubation of WT MHEC with a β-catenin inhibitor, endo-IWR 1, dramatically reduced the level of infection of WT MHEC. Parasite infectivity of inhibitor treated WT MHEC was similar to the level of infection of TSP1 KO MHEC. These results indicate that the β-catenin pathway induced by the parasite and regulated by TSP1 during the early phase of T. cruzi infection is an important potential therapeutic target, which can be explored for the prophylactic prevention of T. cruzi infection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号