全文获取类型
收费全文 | 512篇 |
免费 | 5篇 |
国内免费 | 1篇 |
专业分类
518篇 |
出版年
2024年 | 5篇 |
2023年 | 7篇 |
2022年 | 14篇 |
2021年 | 21篇 |
2020年 | 9篇 |
2019年 | 17篇 |
2018年 | 21篇 |
2017年 | 13篇 |
2016年 | 25篇 |
2015年 | 29篇 |
2014年 | 30篇 |
2013年 | 41篇 |
2012年 | 37篇 |
2011年 | 32篇 |
2010年 | 44篇 |
2009年 | 29篇 |
2008年 | 34篇 |
2007年 | 30篇 |
2006年 | 24篇 |
2005年 | 11篇 |
2004年 | 12篇 |
2003年 | 9篇 |
2002年 | 11篇 |
2001年 | 2篇 |
1998年 | 1篇 |
1996年 | 1篇 |
1994年 | 2篇 |
1988年 | 1篇 |
1985年 | 1篇 |
1984年 | 1篇 |
1981年 | 2篇 |
1974年 | 1篇 |
1965年 | 1篇 |
排序方式: 共有518条查询结果,搜索用时 0 毫秒
1.
Ashutosh Arun Kayla J. Rayford Ayorinde Cooley Tanu Rana Girish Rachakonda Fernando Villalta Siddharth Pratap Maria F. Lima Nader Sheibani Pius N. Nde 《PLoS neglected tropical diseases》2022,16(1)
The protozoan parasite, Trypanosoma cruzi, causes severe morbidity and mortality in afflicted individuals. Approximately 30% of T. cruzi infected individuals present with cardiac pathology. The invasive forms of the parasite are carried in the vascular system to infect other cells of the body. During transportation, the molecular mechanisms by which the parasite signals and interact with host endothelial cells (EC) especially heart endothelium is currently unknown. The parasite increases host thrombospondin-1 (TSP1) expression and activates the Wnt/β-catenin and hippo signaling pathways during the early phase of infection. The links between TSP1 and activation of the signaling pathways and their impact on parasite infectivity during the early phase of infection remain unknown. To elucidate the significance of TSP1 function in YAP/β-catenin colocalization and how they impact parasite infectivity during the early phase of infection, we challenged mouse heart endothelial cells (MHEC) from wild type (WT) and TSP1 knockout mice with T. cruzi and evaluated Wnt signaling, YAP/β-catenin crosstalk, and how they affect parasite infection. We found that in the absence of TSP1, the parasite induced the expression of Wnt-5a to a maximum at 2 h (1.73±0.13), P< 0.001 and enhanced the level of phosphorylated glycogen synthase kinase 3β at the same time point (2.99±0.24), P<0.001. In WT MHEC, the levels of Wnt-5a were toned down and the level of p-GSK-3β was lowest at 2 h (0.47±0.06), P< 0.01 compared to uninfected control. This was accompanied by a continuous significant increase in the nuclear colocalization of β-catenin/YAP in TSP1 KO MHEC with a maximum Pearson correlation coefficient of (0.67±0.02), P< 0.05 at 6 h. In WT MHEC, the nuclear colocalization of β-catenin/YAP remained steady and showed a reduction at 6 h (0.29±0.007), P< 0.05. These results indicate that TSP1 plays an important role in regulating β-catenin/YAP colocalization during the early phase of T. cruzi infection. Importantly, dysregulation of this crosstalk by pre-incubation of WT MHEC with a β-catenin inhibitor, endo-IWR 1, dramatically reduced the level of infection of WT MHEC. Parasite infectivity of inhibitor treated WT MHEC was similar to the level of infection of TSP1 KO MHEC. These results indicate that the β-catenin pathway induced by the parasite and regulated by TSP1 during the early phase of T. cruzi infection is an important potential therapeutic target, which can be explored for the prophylactic prevention of T. cruzi infection. 相似文献
2.
Ashutosh Tiwari Amir Liba Se Hui Sohn Sai V. Seetharaman Osman Bilsel C. Robert Matthews P. John Hart Joan Selverstone Valentine Lawrence J. Hayward 《The Journal of biological chemistry》2009,284(40):27746-27758
The mechanisms by which mutant variants of Cu/Zn-superoxide dismutase (SOD1) cause familial amyotrophic lateral sclerosis are not clearly understood. Evidence to date suggests that altered conformations of amyotrophic lateral sclerosis mutant SOD1s trigger perturbations of cellular homeostasis that ultimately cause motor neuron degeneration. In this study we correlated the metal contents and disulfide bond status of purified wild-type (WT) and mutant SOD1 proteins to changes in electrophoretic mobility and surface hydrophobicity as detected by 1-anilinonaphthalene-8-sulfonic acid (ANS) fluorescence. As-isolated WT and mutant SOD1s were copper-deficient and exhibited mobilities that correlated with their expected negative charge. However, upon disulfide reduction and demetallation at physiological pH, both WT and mutant SOD1s underwent a conformational change that produced a slower mobility indicative of partial unfolding. Furthermore, although ANS did not bind appreciably to the WT holoenzyme, incubation of metal-deficient WT or mutant SOD1s with ANS increased the ANS fluorescence and shifted its peak toward shorter wavelengths. This increased interaction with ANS was greater for the mutant SOD1s and could be reversed by the addition of metal ions, especially Cu2+, even for SOD1 variants incapable of forming the disulfide bond. Overall, our findings support the notion that misfolding associated with metal deficiency may facilitate aberrant interactions of SOD1 with itself or with other cellular constituents and may thereby contribute to neuronal toxicity.The sequence of events by which more than 100 mutations in the gene encoding Cu/Zn-superoxide dismutase (SOD1)3 cause familial forms of amyotrophic lateral sclerosis (ALS) is unknown. Studies of purified SOD1 proteins and cellular or rodent models of SOD1-linked ALS suggest that impaired metal ion binding or misfolding of mutant SOD1 proteins in the cellular environment may be related to their toxicity (1–10). Available evidence suggests that partially unfolded mutant SOD1 species could contribute to motor neuron death by promoting abnormal interactions that produce cellular dysfunction (11–16).In previous studies we characterized physicochemical properties of 14 different biologically metallated ALS SOD1 mutants (17) and demonstrated altered thermal stabilities of these mutants compared with wild-type (WT) SOD1 (18). These “as-isolated” SOD1 proteins, which contain variable amounts of copper and zinc, were broadly grouped into two classes based on their ability to incorporate and retain metal ions with high affinity. WT-like SOD1 mutants retain the ability to bind copper and zinc ions and exhibit dismutase activity similar to the normal enzyme, whereas metal binding region (MBR) mutants are significantly deficient in copper and/or zinc (17, 19). We also observed that ALS-associated SOD1 mutants were more susceptible than the WT enzyme to reduction of the intrasubunit disulfide bond between Cys-57 and Cys-146 (20). The significance of these results is that even WT-like mutants, which exhibit a nearly normal backbone structure (21–23), may be vulnerable to destabilizing influences in vivo. Our group and others subsequently showed that the mutant SOD1 proteins share a susceptibility to increased hydrophobicity under conditions that reduce disulfide bonds and/or chelate metal ions (5) and that similar hydrophobic species exist in tissue lysates from mutant SOD1 transgenic mice (4–6). One consequence of such hydrophobic exposure could be the facilitation of abnormal interactions between the mutant enzymes and other cellular constituents (e.g. chaperones, mitochondrial components, or other targets), which might influence pathways leading to motor neuron death (15, 16, 24–27).Accumulating evidence suggests that metal deficiency of SOD1 is an important factor that can influence SOD1 aggregation or neurotoxicity (4, 28–33), but the metal-deficient states of SOD1 that are most relevant to ALS remain unclear. Zinc-deficient, copper-replete SOD1 species, which can be produced in vitro by adding copper to SOD1 that has been stripped of its metal ions at acidic pH, were shown to be toxic to motor neurons in culture (28). However, it has not been shown that zinc-deficient, copper-replete SOD1 is produced in vivo as a consequence of ALS mutations, and loading of copper into SOD1 by the copper chaperone for SOD1 (CCS) is not required for toxicity (34, 35). Furthermore, the MBR mutants have a disrupted copper site and have been found to be severely deficient in both zinc and copper (17, 30), yet expression of these SOD1s still produces motor neuron disease (1, 2, 30, 34, 36, 37).When recombinant human SOD1 was overexpressed in insect cells, we instead observed zinc-replete but copper-deficient species for most WT-like mutants, probably because the capacity of the copper-loading mechanism was exceeded (17). These preparations indicate that zinc can be efficiently incorporated into many WT-like mutants in vivo, and much of it is retained after purification. Furthermore, these copper-deficient biologically metallated proteins may be useful reagents to assess the influence of copper binding upon other properties of SOD1 mutants that may be relevant to their neurotoxicity.We previously observed that reduction of the Cys-57—Cys-146 disulfide bond facilitates the ability of metal chelators to alter the electrophoretic mobility and to increase the hydrophobicity of SOD1 mutants (5). This is consistent with the known properties of this linkage to stabilize the dimeric interface, to orient Arg-143 via a hydrogen bond from the carbonyl oxygen of Cys-57 to Arg-143-NH2, and to prevent metal ion loss (38–40). However, it remains unclear whether the Cys-57—Cys-146 bond is required to prevent abnormal SOD1 hydrophobic exposure or whether the aberrant conformational change primarily results from metal ion loss. Ablation of the disulfide bond by the experimental (non-ALS) mutants C57S and C146S provides useful reagents to test the relative influence of the disulfide bond and copper binding upon SOD1 properties.In this study we sought to correlate the consequences of copper deficiency, copper and zinc deficiency, and disulfide reduction upon the hydrodynamic behavior and surface hydrophobicity of WT and representative mutant SOD1 enzymes (Fig. 1A). We quantitated the metal contents of as-isolated SOD1 proteins, detected changes in conformation or metal occupancy using native PAGE to assess their electrophoretic mobility, a measure of global conformational change, and correlated these changes to hydrophobic exposure using 1-anilinonaphthalene-8-sulfonic acid (ANS), which is very sensitive to local conformational changes. ANS is a small amphipathic dye (Fig. 1B) that has been used as a sensitive probe to detect hydrophobic pockets on protein surfaces (41–44). Free ANS exhibits only weak fluorescence that is maximal near 520 nm, but when ANS binds to a hydrophobic site in a partially or fully folded protein, the fluorescence peak increases in amplitude and shifts to a shorter wavelength (42). ANS also has an anionic sulfonate group that can interact with cationic groups (e.g. Arg or Lys residues) through ion-pair formation which may be further strengthened by hydrophobic interactions (43–46).Open in a separate windowFIGURE 1.A, WT SOD1 structure showing the position of the C57-C146 intrasubunit disulfide bond (S–S, yellow), bound copper and zinc ions, and ALS mutant residues. The residues altered in A4V, G85R, G93A, D124V, and S134N SOD1s are indicated as green spheres. The backbone of the β-barrel core and the loops is shown in a rainbow color, from blue at the amino terminus to red at the carboxyl terminus. The figure was generated using PyMOL (84) and PDB entry 1HL5 (22). B, chemical structure of ANS fluorophore.To evaluate further the importance of metal ion binding, we measured spectral changes related to the binding of cobalt and copper to the same SOD1 proteins. We observed that as-isolated WT-like mutants containing zinc could interact with copper ions to produce an electrophoretic mobility and decreased hydrophobicity resembling that of the fully metalated holo-WT SOD1. In contrast, we saw no evidence for copper binding to MBR mutants in a manner that alters their hydrodynamic properties or their hydrophobicity. Our data suggest that binding of both copper and zinc are important determinants of SOD1 conformation and that perturbation of such binding may be relevant to the ALS disease process. 相似文献
3.
A Bayesian framework for combining gene predictions 总被引:2,自引:0,他引:2
MOTIVATION: Gene identification and gene discovery in new genomic sequences is one of the most timely computational questions addressed by bioinformatics scientists. This computational research has resulted in several systems that have been used successfully in many whole-genome analysis projects. As the number of such systems grows the need for a rigorous way to combine the predictions becomes more essential. RESULTS: In this paper we provide a Bayesian network framework for combining gene predictions from multiple systems. The framework allows us to treat the problem as combining the advice of multiple experts. Previous work in the area used relatively simple ideas such as majority voting. We introduce, for the first time, the use of hidden input/output Markov models for combining gene predictions. We apply the framework to the analysis of the Adh region in Drosophila that has been carefully studied in the context of gene finding and used as a basis for the GASP competition. The main challenge in combination of gene prediction programs is the fact that the systems are relying on similar features such as cod on usage and as a result the predictions are often correlated. We show that our approach is promising to improve the prediction accuracy and provides a systematic and flexible framework for incorporating multiple sources of evidence into gene prediction systems. 相似文献
4.
5.
Choudhary AK Andrabi R Prakash SS Kumar R Choudhury SD Wig N Biswas A Hazarika A Luthra K 《Journal of microbiology (Seoul, Korea)》2012,50(1):149-154
We assessed the anti-V3 antibody content and viral neutralization potential of the plasma of 63 HIV-1-infected patients (antiretroviral naïve=39, treated=24) against four primary isolates (PIs) of clade C and a tier 1 clade B isolate SF162. Depletion and inhibition of anti-V3 antibodies in the plasma of five patients with high titers of anti-V3 antibodies led to modest change in the neutralization percentage against two PIs (range 0–21%). The plasma of antiretroviral-treated patients exhibited higher neutralization potential than that of the drug-naïve plasmas against the four PIs tested which was further evidenced by a follow-up study. 相似文献
6.
Dipak Banerjee Ramesh C. Upadhyay Umesh B. Chaudhary Ravindra Kumar Sohanvir Singh Ashutosh Jagan Mohanarao G. Shamik Polley Ayan Mukherjee Tapan K. Das Sachinandan De 《Cell stress & chaperones》2014,19(3):401-408
Heat shock protein 70 (HSP70) is one of the most abundant and best characterized heat shock protein family that consists of highly conserved stress proteins, expressed in response to stress, and plays crucial roles in environmental stress tolerance and adaptation. The present study was conducted to identify major types of genes under the HSP70 family and to quantify their expression pattern in heat- and cold-adapted Indian goats (Capra hircus) with respect to different seasons. Five HSP70 gene homologues to HSPA8, HSPA6, HSPA1A, HSPA1L, and HSPA2 were identified by gene-specific primers. The cDNA sequences showed high similarity to other mammals, and proteins have an estimated molecular weight of around 70 kDa. The expression of HSP70 genes was observed during summer and winter. During summer, the higher expression of HSPA8, HSPA6, and HSPA1A was observed, whereas the expression levels of HSPA1L and HSPA2 were found to be lower. It was also observed that the expression of HSPA1A and HSPA8 was higher during winter in both heat- and cold-adapted goats but downregulates in case of other HSPs. Therefore, both heat and cold stress induced the overexpression of HSP70 genes. An interesting finding that emerged from the study is the higher expression of HSP70 genes in cold-adapted goats during summer and in heat-adapted goats during winter. Altogether, the results indicate that the expression pattern of HSP70 genes is species- and breed-specific, most likely due to variations in thermal tolerance and adaptation to different climatic conditions. 相似文献
7.
8.
Vandana Singh Archana Srivastava Ashutosh Tiwari 《International journal of biological macromolecules》2009,45(3):293-297
A water-soluble seed gum was isolated from seed endosperm of Cassia javahikai. The acid-catalyzed fragmentation, methylation, selective enzymatic degradation and periodate oxidation suggested a heteropolymeric structure for the polysaccharide. The polysaccharide was shown to have a linear chain of β(1 → 4) linked d-mannopyranosyls units with side chains of α(1 → 6) d-galactopyranosyl units. Grafting of polyacrylamide onto the gum was performed using K2S2O8/ascorbic acid redox system in presence of Ag+ as catalyst at 35 ± 2 °C. The viscosity of the gum solution increased on grafting and the grafted gum was observed to resist biodegradation for more than 256 h. Thermogravimetric analysis revealed that grafted gum was more thermally stable than native gum. 相似文献
9.
10.
Apurba Biswas Michael G.B. Drew Joan Ribas Carmen Diaz Ashutosh Ghosh 《Inorganica chimica acta》2011,379(1):28
Two phenoxido bridged dinuclear Cu(II) complexes, [Cu2(L1)2(NCNCN)2] (1) and [Cu2(L2)2(NCNCN)2]·2H2O (2) have been synthesized using the tridentate reduced Schiff-base ligands 2-[1-(2-dimethylamino-ethylamino)-ethyl]-phenol (HL1) and 2-[1-(3-methylamino-propylamino)-ethyl]-phenol (HL2), respectively. The complexes have been characterized by X-ray structural analyses and variable-temperature magnetic susceptibility measurements. Both the complexes present a diphenoxido bridging Cu2O2 core. The geometries around metal atoms are intermediate between trigonal bipyramid and square pyramid with the Addison parameters (τ) = 0.57 and 0.49 for 1 and 2, respectively. Within the core the Cu–O–Cu angles are 99.15° and 103.51° and average Cu–O bond distances are 2.036 and 1.978 Å for compounds 1 and 2, respectively. These differences have marked effect on the magnetic properties of two compounds. Although both are antiferromagnetically coupled, the coupling constants (J = −184.3 and −478.4 cm−1 for 1 and 2, respectively) differ appreciably. 相似文献