首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  2012年   1篇
  2009年   1篇
  2007年   2篇
  2006年   2篇
  1996年   1篇
排序方式: 共有7条查询结果,搜索用时 437 毫秒
1
1.
GABAergic transmission in the amygdala modulates the expression of anxiety. Understanding the interplay between GABAergic transmission and excitatory circuits in the amygdala is, therefore, critical for understanding the neurobiological basis of anxiety. Here, we used a multi-disciplinary approach to demonstrate that GluR5-containing kainate receptors regulate local inhibitory circuits, modulate the excitatory transmission from the basolateral amygdala to the central amygdala, and control behavioral anxiety. Genetic deletion of GluR5 or local injection of a GluR5 antagonist into the basolateral amygdala increases anxiety-like behavior. Activation of GluR5 selectively depolarized inhibitory neurons, thereby increasing GABA release and contributing to tonic GABA current in the basolateral amygdala. The enhanced GABAergic transmission leads to reduced excitatory inputs in the central amygdala. Our results suggest that GluR5 is a key regulator of inhibitory circuits in the amygdala and highlight the potential use of GluR5-specific drugs in the treatment of pathological anxiety.  相似文献   
2.
The excessive activation of N-methyl-D-aspartate (NMDA) receptors by glutamate results in neuronal excitotoxicity. cAMP is a key second messenger and contributes to NMDA receptor-dependent synaptic plasticity. Adenylyl cyclases 1 (AC1) and 8 (AC8) are the two major calcium-stimulated ACs in the central nervous system. Previous studies demonstrate AC1 and AC8 play important roles in synaptic plasticity, memory, and persistent pain. However, little is known about the possible roles of these two ACs in glutamate-induced neuronal excitotoxicity. Here, we report that genetic deletion of AC1 significantly attenuated neuronal death induced by glutamate in primary cultures of cortical neurons, whereas AC8 deletion did not produce a significant effect. AC1, but not AC8, contributes to intracellular cAMP production following NMDA receptor activation by glutamate in cultured cortical neurons. AC1 is involved in the dynamic modulation of cAMP-response element-binding protein activity in neuronal excitotoxicity. To explore the possible roles of AC1 in cell death in vivo, we studied neuronal excitotoxicity induced by an intracortical injection of NMDA. Cortical lesions induced by NMDA were significantly reduced in AC1 but not in AC8 knock-out mice. Our findings provide direct evidence that AC1 plays an important role in neuronal excitotoxicity and may serve as a therapeutic target for preventing excitotoxicity in stroke and neurodegenerative diseases.  相似文献   
3.
Vadakkan KI  Li B  De Boni U 《Chromosoma》2006,115(5):395-402
In Purkinje neurons of the mouse cerebellum, the centromeres of several chromosomes are placed in close proximity to form a distinct pattern of clusters and exhibit reproducible spatial redistributions during development. In granule neurons, an adjacent cell type in the cerebellum, the pattern, size, and number of centromeric aggregations are different from those of Purkinje neurons. The present work was undertaken to test the hypothesis that the same chromosomes form part of one aggregate in a cell-type-specific manner. Fluorescence in situ hybridization (FISH) with chromosome-specific paracentromeric probes was used to identify centromeric regions of individual chromosomes in cerebellar Purkinje and granule neurons of the adult mouse. When pairs of centromeric probes were used in two-color FISH, one homologue each of chromosomes 2 and 11 were routinely found close to each other in Purkinje neurons but not in granule neurons. This finding of specific proximity was limited to the pair 2 and 11, out of the ten chromosome pairs that were randomly selected and studied. Our results indicate that, in adult Purkinje neurons, a cell-type-specific spatial proximity is present between centromeric domains of one homologue each of chromosomes 2 and 11.  相似文献   
4.

Background

Numerous studies have implicated spinal extracellular signal-regulated kinases (ERKs) as mediators of nociceptive plasticity. These studies have utilized pharmacological inhibition of MEK to demonstrate a role for ERK signaling in pain, but this approach cannot distinguish between effects of ERK in neuronal and non-neuronal cells. The present studies were undertaken to test the specific role of neuronal ERK in formalin-induced inflammatory pain. Dominant negative MEK (DN MEK) mutant mice in which MEK function is suppressed exclusively in neurons were tested in the formalin model of inflammatory pain.

Results

Formalin-induced second phase spontaneous pain behaviors as well as thermal hyperalgesia measured 1 – 3 hours post-formalin were significantly reduced in the DN MEK mice when compared to their wild type littermate controls. In addition, spinal ERK phosphorylation following formalin injection was significantly reduced in the DN MEK mice. This was not due to a reduction of the number of unmyelinated fibers in the periphery, since these were almost double the number observed in wild type controls. Further examination of the effects of suppression of MEK function on a downstream target of ERK phosphorylation, the A-type potassium channel, showed that the ERK-dependent modulation of the A-type currents is significantly reduced in neurons from DN MEK mice compared to littermate wild type controls.

Conclusion

Our results demonstrate that the neuronal MEK-ERK pathway is indeed an important intracellular cascade that is associated with formalin-induced inflammatory pain and thermal hyperalgesia.  相似文献   
5.
Prostatic acid phosphatase (PAP) is expressed in nociceptive neurons and functions as an ectonucleotidase. When injected intraspinally, the secretory isoforms of human and bovine PAP protein have potent and long-lasting antinociceptive effects that are dependent on A1-adenosine receptor (A1R) activation. In this study, we purified the secretory isoform of mouse (m)PAP using the baculovirus expression system to determine if recombinant mPAP also had antinociceptive properties. We found that mPAP dephosphorylated AMP, and to a much lesser extent, ADP at neutral pH (pH 7.0). In contrast, mPAP dephosphorylated all purine nucleotides (AMP, ADP, ATP) at an acidic pH (pH 5.6). The transmembrane isoform of mPAP had similar pH-dependent ectonucleotidase activity. A single intraspinal injection of mPAP protein had long-lasting (three day) antinociceptive properties, including antihyperalgesic and antiallodynic effects in the Complete Freund''s Adjuvant (CFA) inflammatory pain model. These antinociceptive effects were transiently blocked by the A1R antagonist 8-cyclopentyl-1, 3-dipropylxanthine (CPX), suggesting mPAP dephosphorylates nucleotides to adenosine to mediate antinociception just like human and bovine PAP. Our studies indicate that PAP has species-conserved antinociceptive effects and has pH-dependent ectonucleotidase activity. The ability to metabolize nucleotides in a pH-dependent manner could be relevant to conditions like inflammation where tissue acidosis and nucleotide release occur. Lastly, our studies demonstrate that recombinant PAP protein can be used to treat chronic pain in animal models.  相似文献   
6.
Modeling various neuronal functions in search of emergent properties may achieve success when the gold standard of replicating the models in physical systems starts exhibiting some of these properties. Since very large number of functions can be modeled and need testing, we suggest an alternate method of examining higher brain functions: seeing them as internal sensations formed from their hypothetical basic units. Here, we explain the need to replicate the natural mechanism using electronic circuits, discuss some of the technical aspects and introduce some concepts for searching for properties of internal sensations evolving from them.  相似文献   
7.
The regeneration potential of leaves of moth bean, pigeonpea and grass pea was studied on Murashige and Skoog’s (MS) medium supplemented with various combinations of auxins and cytokinins. Regeneration of shoots was obtained mainly on MS medium supplemented with high auxin and low cytokinin levels. However, frequency of response varied not only in the three legume species but also in their varieties studied. Roots were induced on regenerated shoots by transferring them to MS basal medium. Complete plant regeneration was observed in the three legumes in a short duration of 60–70 days.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号