首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5230篇
  免费   492篇
  国内免费   1篇
  2023年   23篇
  2022年   56篇
  2021年   132篇
  2020年   66篇
  2019年   96篇
  2018年   107篇
  2017年   78篇
  2016年   154篇
  2015年   243篇
  2014年   260篇
  2013年   313篇
  2012年   404篇
  2011年   377篇
  2010年   220篇
  2009年   192篇
  2008年   235篇
  2007年   233篇
  2006年   198篇
  2005年   219篇
  2004年   194篇
  2003年   192篇
  2002年   177篇
  2001年   105篇
  2000年   115篇
  1999年   97篇
  1998年   49篇
  1997年   51篇
  1996年   33篇
  1995年   34篇
  1994年   34篇
  1993年   34篇
  1992年   75篇
  1991年   69篇
  1990年   63篇
  1989年   69篇
  1988年   48篇
  1987年   43篇
  1986年   51篇
  1985年   40篇
  1984年   33篇
  1983年   40篇
  1982年   30篇
  1981年   38篇
  1980年   24篇
  1979年   37篇
  1978年   46篇
  1977年   28篇
  1976年   26篇
  1974年   28篇
  1969年   22篇
排序方式: 共有5723条查询结果,搜索用时 15 毫秒
1.
2.
3.
The primitive land plant life cycle featured the production of spores of unimodal size, a condition called homospory. The evolution of bimodal size distributions with small male spores and large female spores, known as heterospory, was an innovation that occurred repeatedly in the history of land plants. The importance of desiccation‐resistant spores for colonization of the land is well known, but the adaptive value of heterospory has never been well established. It was an addition to a sexual life cycle that already involved male and female gametes. Its role as a precursor to the evolution of seeds has received much attention, but this is an evolutionary consequence of heterospory that cannot explain the transition from homospory to heterospory (and the lack of evolutionary reversal from heterospory to homospory). Enforced outcrossing of gametophytes has often been mentioned in connection to heterospory, but we review the shortcomings of this argument as an explanation of the selective advantage of heterospory. Few alternative arguments concerning the selective forces favouring heterospory have been proposed, a paucity of attention that is surprising given the importance of this innovation in land plant evolution. In this review we highlight two ideas that may lead us to a better understanding of why heterospory evolved. First, models of optimal resource allocation – an approach that has been used for decades in evolutionary ecology to help understand parental investment and other life‐history patterns – suggest that an evolutionary increase in spore size could reach a threshold at which small spores yielding small, sperm‐producing gametophytes would return greater fitness per unit of resource investment than would large spores and bisexual gametophytes. With the advent of such microspores, megaspores would evolve under frequency‐dependent selection. This argument can account for the appearance of heterospory in the Devonian, when increasingly tall and complex vegetative communities presented competitive conditions that made large spore size advantageous. Second, heterospory is analogous in many ways to anisogamy. Indeed, heterospory is a kind of re‐invention of anisogamy within the context of a sporophyte‐dominant land plant life cycle. The evolution of anisogamy has been the subject of important theoretical and empirical investigation. Recent work in this area suggests that mate‐encounter dynamics set up selective forces that can drive the evolution of anisogamy. We suggest that similar dispersal and mating dynamics could have underlain spore size differentiation. The two approaches offer predictions that are consistent with currently available data but could be tested far more thoroughly. We hope to re‐establish attention on this neglected aspect of plant evolutionary biology and suggest some paths for empirical investigation.  相似文献   
4.
5.
Epithelial cell islets in primary monolayer cultures of human breast biopsies were characterized by combined immuno-, enzyme- and DNA cytochemistry as well as by analysis of attachment-, spread- and growth patterns. For cultivation we used explants from reduction mammoplasties, benign lesions, primary carcinomas and metastases. Milk fat globule membrane antigen (MFGM-A) was detected with a monoclonal antibody, and the tetrazolium reaction for glucose 6-phosphate dehydrogenase (G6PDH) as well as DNA content of the cultured cells were quantified. Spreading and growth of individual islets were studied by image analysis. Fibroblast-like cells did not express MFGM-A, and whereas epithelial (MFGM-A positive) cell islets of normal and benign origin showed cells with no or low G6PDH reaction, respectively, the majority of epithelial cell islets from 11 out of 21 carcinomas showed strong reaction. Cell islets with strong G6PDH reaction were sometimes hyperdiploid. Moreover, whereas cell islets with no or low reaction from both benign lesions and carcinomas readily attached and spread in a serum-free medium and showed population doubling times of 30 to 110 h, cell islets with strong reaction from carcinomas and metastatic lesions required serum for attachment and their growth rate was too low to be determined.  相似文献   
6.
Greater sage-grouse populations have decreased steadily since European settlement in western North America. Reduced availability of brood-rearing habitat has been identified as a limiting factor for many populations. We used radio-telemetry to acquire locations of sage-grouse broods from 1998 to 2012 in Strawberry Valley, Utah. Using these locations and remotely-sensed NAIP (National Agricultural Imagery Program) imagery, we 1) determined which characteristics of brood-rearing habitat could be used in widely available, high resolution imagery 2) assessed the spatial extent at which sage-grouse selected brood-rearing habitat, and 3) created a predictive habitat model to identify areas of preferred brood-rearing habitat. We used AIC model selection to evaluate support for a list of variables derived from remotely-sensed imagery. We examined the relationship of these explanatory variables at three spatial extents (45, 200, and 795 meter radii). Our top model included 10 variables (percent shrub, percent grass, percent tree, percent paved road, percent riparian, meters of sage/tree edge, meters of riparian/tree edge, distance to tree, distance to transmission lines, and distance to permanent structures). Variables from each spatial extent were represented in our top model with the majority being associated with the larger (795 meter) spatial extent. When applied to our study area, our top model predicted 75% of naïve brood locations suggesting reasonable success using this method and widely available NAIP imagery. We encourage application of our methodology to other sage-grouse populations and species of conservation concern.  相似文献   
7.
8.
Dienelactone hydrolase (DLH), an enzyme from the β-ketoadipate pathway, catalyzes the hydrolysis of dienelactone to maleylacetate. Our inhibitor binding studies suggest that its substrate, dienelactone, is held in the active site by hydrophobic interactions around the lactone ring and by the ion pairs between its carboxylate and Arg-81 and Arg-206. Like the cysteine/serine proteases, DLH has a catalytic triad (Cys-123, His-202, Asp-171) and its mechanism probably involves the formation of covalently bound acyl intermediate via a tetrahedral intermediate. Unlike the proteases, DLH seems to protonate the incipient leaving group only after the collapse of the first tetrahedral intermediate, rendering DLH incapable of hydrolyzing amide analogues of its ester substrate. In addition, the triad His probably does not protonate the leaving group (enolate) or deprotonate the water for deacylation; rather, the enolate anion abstracts a proton from water and, in doing so, supplies the hydroxyl for deacylation. © 1993 Wiley-Liss, Inc.  相似文献   
9.
This paper defines a collection of Drosophila deletion mutations (deficiencies) that can be systematically screened for embryonic phenotypes, orphan receptor ligands, and genes affecting protein localization. It reports the results of deficiency screens we have conducted that have revealed new axon guidance phenotypes in the central nervous system and neuromuscular system and permitted a quantitative assessment of the number of potential genes involved in regulating guidance of specific motor axon branches. Deficiency “kits” that cover the genome with a minimum number of lines have been established to facilitate gene mapping. These kits cannot be systematically analyzed for phenotypes, however, since embryos homozygous for many deficiencies in these kits fail to develop due to the loss of key gene products encoded within the deficiency. To create new kits that can be screened for phenotype, we have examined the development of the nervous system in embryos homozygous for more than 700 distinct deficiency mutations. A kit of ∼400 deficiency lines for which homozygotes have a recognizable nervous system and intact body walls encompasses >80% of the genome. Here we show examples of screens of this kit for orphan receptor ligands and neuronal antigen expression. It can also be used to find genes involved in expression, patterning, and subcellular localization of any protein that can be visualized by antibody staining. A subset kit of 233 deficiency lines, for which homozygotes develop relatively normally to late stage 16, covers ∼50% of the genome. We have screened it for axon guidance phenotypes, and we present examples of new phenotypes we have identified. The subset kit can be used to screen for phenotypes affecting all embryonic organs. In the future, these deficiency kits will allow Drosophila researchers to rapidly and efficiently execute genome-wide anatomical screens that require examination of individual embryos at high magnification.  相似文献   
10.
Type II callus cultures were initiated from immature tassels of a maize genotype with an A188/B73 genetic background using N6 medium containing 1.0 mg/liter 2,4-D, 100 mg/liter casamino acids, 25 mM proline, and 0.2% phytagel™. Inclusion of 10 μM AgNO3 in this medium significantly increased the frequency and vigor of the type II callus response. Friable calli emerged from these explants after two consecutive 2-week subculture intervals. Tassels from 10 to 30 mm long were capable of producing type II cultures. The plants regenerated from these cultures were green and indistinguishable from plants regenerated from immature embryo-derived calli.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号