首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3092篇
  免费   260篇
  3352篇
  2023年   15篇
  2022年   61篇
  2021年   98篇
  2020年   53篇
  2019年   73篇
  2018年   84篇
  2017年   55篇
  2016年   112篇
  2015年   164篇
  2014年   182篇
  2013年   207篇
  2012年   283篇
  2011年   257篇
  2010年   142篇
  2009年   126篇
  2008年   152篇
  2007年   149篇
  2006年   104篇
  2005年   125篇
  2004年   118篇
  2003年   85篇
  2002年   67篇
  2001年   35篇
  2000年   28篇
  1999年   22篇
  1998年   21篇
  1997年   18篇
  1996年   11篇
  1995年   11篇
  1994年   13篇
  1993年   17篇
  1992年   24篇
  1991年   17篇
  1990年   16篇
  1989年   31篇
  1988年   14篇
  1987年   21篇
  1986年   20篇
  1985年   13篇
  1984年   19篇
  1983年   13篇
  1982年   13篇
  1981年   16篇
  1980年   14篇
  1979年   11篇
  1978年   17篇
  1977年   12篇
  1975年   8篇
  1973年   9篇
  1967年   10篇
排序方式: 共有3352条查询结果,搜索用时 15 毫秒
1.
The state of aggregation of the (Ca2+ + Mg2+)-ATPase in the membrane of sarcoplasmic reticulum and in reconstituted membrane systems has been studied using saturation-transfer electron spin resonance (ST-ESR). Saturation-transfer ESR spectra show that in the sarcoplasmic reticulum, the ATPase is relatively free to rotate, with an effective rotational correlation time of approx. 33 microseconds at 4 degrees C, consistent with a monomeric or dimeric structure. The rate of rotation is observed to decrease with decreasing molar ratio of lipid to protein. In reconstituted systems, rotational motion of the ATPase on the millisecond time scale ceases when the lipids are in the gel phase. Addition of decavanadate, which causes the formation of crystalline arrays in negatively stained electron micrographs, results in only a small reduction in rotation rate for the ATPase in the membrane. The experiments are interpreted in terms of a short-lived (on the millisecond time scale) protein-protein interaction, with the formation of crystalline clusters of ATPase molecules which form and melt rapidly.  相似文献   
2.
J D Pilot  J M East  A G Lee 《Biochemistry》2001,40(28):8188-8195
We have developed a procedure for the reconstitution of Escherichia coli diacylglycerol kinase (DGK) into phospholipid bilayers containing diacylglycerol substrate. When DGK is reconstituted into a series of phosphatidylcholines containing monounsaturated fatty acyl chains, activity against dihexanoylglycerol (DHG) as a substrate was found to be markedly dependent on the fatty acyl chain length with the highest activity in dioleoylphosphatidylcholine [di(C18:1)PC] and a lower activity in bilayers with shorter or longer fatty acyl chains. Low activities in the short chain phospholipid dimyristoleoylphosphatidylcholine [di(C14:1)PC] followed from an increase in the K(m) value for DHG and ATP, with no effect on v(max). In contrast, in the long chain lipid dierucoylphosphatidylcholine [di(C24:1)PC], the low activity followed from a decrease in v(max) with no effect on K(m). In mixtures of two phosphatidylcholines with different chain lengths, the activity corresponded to that expected for the average chain length of the mixture. Cholesterol increased the activity in di(C14:1)PC but slightly decreased it in di(C18:1)PC or di(C24:1)PC, effects that could follow from changes in bilayer thickness caused by cholesterol.  相似文献   
3.
Dienelactone hydrolase (DLH), an enzyme from the β-ketoadipate pathway, catalyzes the hydrolysis of dienelactone to maleylacetate. Our inhibitor binding studies suggest that its substrate, dienelactone, is held in the active site by hydrophobic interactions around the lactone ring and by the ion pairs between its carboxylate and Arg-81 and Arg-206. Like the cysteine/serine proteases, DLH has a catalytic triad (Cys-123, His-202, Asp-171) and its mechanism probably involves the formation of covalently bound acyl intermediate via a tetrahedral intermediate. Unlike the proteases, DLH seems to protonate the incipient leaving group only after the collapse of the first tetrahedral intermediate, rendering DLH incapable of hydrolyzing amide analogues of its ester substrate. In addition, the triad His probably does not protonate the leaving group (enolate) or deprotonate the water for deacylation; rather, the enolate anion abstracts a proton from water and, in doing so, supplies the hydroxyl for deacylation. © 1993 Wiley-Liss, Inc.  相似文献   
4.
This paper defines a collection of Drosophila deletion mutations (deficiencies) that can be systematically screened for embryonic phenotypes, orphan receptor ligands, and genes affecting protein localization. It reports the results of deficiency screens we have conducted that have revealed new axon guidance phenotypes in the central nervous system and neuromuscular system and permitted a quantitative assessment of the number of potential genes involved in regulating guidance of specific motor axon branches. Deficiency “kits” that cover the genome with a minimum number of lines have been established to facilitate gene mapping. These kits cannot be systematically analyzed for phenotypes, however, since embryos homozygous for many deficiencies in these kits fail to develop due to the loss of key gene products encoded within the deficiency. To create new kits that can be screened for phenotype, we have examined the development of the nervous system in embryos homozygous for more than 700 distinct deficiency mutations. A kit of ∼400 deficiency lines for which homozygotes have a recognizable nervous system and intact body walls encompasses >80% of the genome. Here we show examples of screens of this kit for orphan receptor ligands and neuronal antigen expression. It can also be used to find genes involved in expression, patterning, and subcellular localization of any protein that can be visualized by antibody staining. A subset kit of 233 deficiency lines, for which homozygotes develop relatively normally to late stage 16, covers ∼50% of the genome. We have screened it for axon guidance phenotypes, and we present examples of new phenotypes we have identified. The subset kit can be used to screen for phenotypes affecting all embryonic organs. In the future, these deficiency kits will allow Drosophila researchers to rapidly and efficiently execute genome-wide anatomical screens that require examination of individual embryos at high magnification.  相似文献   
5.
T. Ashley 《Genetica》1987,72(2):81-84
It has been previously supposed that meiotic synapsis is restricted to homology during early, but not late pachynema. The synaptic begavior of an inverted X chromosome, In(X)1H as reflected in the synaptonemal complexes of the sex chromosomes has been examined in microspread spermatocytes by electron microscopy and evidence of extensive nonhomologus synapsis between the X and Y during early pachynema has been obtained.  相似文献   
6.
G W Ashley  G Harris  J A Stubbe 《Biochemistry》1988,27(20):7841-7845
The ribonucleoside triphosphate reductase of Lactobacillus leichmannii converts the substrate analogue 2'-chloro-2'-deoxyuridine 5'-triphosphate (ClUTP) into a mixture of 2'-deoxyuridine triphosphate (dUTP) and the unstable product 3'-keto-2'-deoxyuridine triphosphate (3'-keto-dUTP). This ketone can be trapped by reduction with NaBH4, producing a 4:1 mixture of xylo-dUTP and dUTP. When [3'-3H]ClUTP is treated with enzyme in the presence of NaBH4, the isomeric deoxyuridines isolated after alkaline phosphatase treatment retained 15% of the 3H in ClUTP. Degradation of these isomeric nucleosides has established the location of the 3H in 3'-keto-dUTP as predominantly 2'(S). The xylo-dU had 98.6% of its label at the 2'(S) position and 1.5% at 2'(R). The isolated dU had 89.6% of its label at 2'(S) and 1.4% at 2'(R), with the remaining 9% label inferred to be at the 3'-carbon, this resulting from the direct enzymic production of dUTP. These results are consistent with enzymic production of a 1:1000 mixture of dUTP and 3'-keto-dUTP, where the 3'-hydrogen of ClUTP is retained at 3' during production of dUTP and is transferred to 2'(S) during production of 3'-keto-dUTP. The implications of these results and the unique role of the cofactor adenosylcobalamin (Ashley et al., 1986) are discussed in terms of reductase being a model for the B12-dependent rearrangement reactions.  相似文献   
7.
G W Ashley  G Harris  J Stubbe 《Biochemistry》1988,27(12):4305-4310
The ribonucleoside triphosphate reductase (RTPR) of Lactobacillus leichmannii is inactivated by the substrate analogue 2'-chloro-2'-deoxyuridine 5'-triphosphate (ClUTP). Inactivation is due to alkylation by 2-methylene-3(2H)-furanone, a decomposition product of the enzymic product 3'-keto-2'-deoxyuridine triphosphate. The former has been unambiguously identified as 2-[(ethylthio)methyl]-3(2H)-furanone, an ethanethiol trapped adduct, which is identical by 1H NMR spectroscopy with material synthesized chemically. Subsequent to rapid inactivation, a slow process occurs that results in formation of a new protein-associated chromophore absorbing maximally near 320 nm. The terminal stages of the inactivation have now been investigated in detail. The alkylation and inactivation stoichiometries were studied as a function of the ratio of ClUTP to enzyme. At high enzyme concentrations (0.1 mM), 1 equiv of [5'-3H]ClUTP resulted in 0.9 equiv of 3H bound to protein and 83% inactivation. The amount of labeling of RTPR increased with increasing ClUTP concentration up to the maximum of approximately 4 labels/RTPR, yet the degree of inactivation did not increase proportionally. This suggests that (1) RTPR may be inactivated by alkylation of a single site and (2) decomposition of 3'-keto-dUTP is not necessarily enzyme catalyzed. The formation of the new protein chromophore was also monitored during inactivation and found to reach its full extent upon the first alkylation. Thus, out of four alkylation sites, only one appears capable of undergoing the subsequent reaction to form the new chromophore. While chromophore formation was prevented by NaBH4 treatment, the chromophore itself is resistant to reduction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
8.
Tissue-specific expression of kallikrein-related genes in the rat   总被引:10,自引:0,他引:10  
P L Ashley  R J MacDonald 《Biochemistry》1985,24(17):4520-4527
Four distinct kallikrein-related mRNAs (PS, S1, S2, and S3), encoded by members of a multigene family, are selectively expressed in various combinations in several rat tissues. Although closely related along most of the mRNA sequence, the four mRNAs can be selectively detected with synthetic oligonucleotide probes complementary to highly variable mRNA subregions. PS mRNA, which encodes an enzyme with true kallikrein activity, is present at high levels in the submaxillary gland, pancreas, and kidney. S1 mRNA, which encodes an enzyme similar to the PS kallikrein, is detected only in the submaxillary gland and is present at one-fifth the PS mRNA level. S2 mRNA, which encodes the enzyme tonin, is present in the submaxillary gland at half the PS mRNA level and at a slightly higher level in the prostate. S3 mRNA, which encodes an enzyme very similar to tonin, is present in the submaxillary gland at one-tenth the PS mRNA level and in the prostate at about the same level as tonin mRNA.  相似文献   
9.
Buffer capacity of intracellular Ca2+ indicators.   总被引:1,自引:1,他引:0       下载免费PDF全文
  相似文献   
10.
The partial characterization of a calcium-dependent phospholipase A2 associated with membranes of mouse sperm is described. Intact and sonicated sperm had comparable phospholipase A2 activity which was maximal at pH 8.0 using [1-14C]oleate-labeled autoclaved Escherichia coli or 1-[1-14C]stearoyl-2-acyl-3-sn-glycerophosphorylethanolamine as substrates. More than 90% of the activity was sedimented when the sperm sonicate was centrifuged at 100 000 X g, indicating that the enzyme is almost totally membrane-associated. The activity is stimulated 200% during the ionophore-induced acrosome reaction and is almost equally distributed between plasma/outer acrosomal and inner acrosomal membrane fractions. The membrane-associated phospholipase A2 had an absolute requirement for low concentrations of Ca2+; Sr2+, Mg2+ and other divalent and monovalent cations would not substitute for Ca2+. In the presence of optimal Ca2+, zinc and gold ions inhibited the activity while Cu2+ and Cd2+ were without effect. Incubation of sperm sonicates with 1-[1-14C]stearoyl-2-acyl-3-sn-glycerophosphorylethanolamine in the presence and absence of sodium deoxycholate demonstrated the presence of phospholipase A2 and lysophospholipase activities. No phospholipase A1 activity was detectable. Indomethacin, sodium meclofenamate and mepacrine, but not dexamethasone or aspirin, inhibited the sperm phospholipase A2 activity. Preincubation with p-bromophenacyl bromide inhibited phospholipase A2, suggesting the presence of histidine at the active site. The enzyme may play an important role in the membrane fusion events in fertilization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号