首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   104篇
  免费   4篇
  2018年   1篇
  2017年   1篇
  2015年   1篇
  2014年   3篇
  2013年   7篇
  2012年   3篇
  2011年   5篇
  2010年   1篇
  2008年   7篇
  2007年   10篇
  2006年   5篇
  2005年   3篇
  2004年   3篇
  2003年   6篇
  2002年   5篇
  2001年   4篇
  2000年   2篇
  1999年   7篇
  1998年   1篇
  1997年   1篇
  1996年   5篇
  1994年   1篇
  1993年   4篇
  1992年   3篇
  1991年   1篇
  1990年   5篇
  1989年   1篇
  1986年   1篇
  1985年   5篇
  1982年   2篇
  1975年   2篇
  1965年   1篇
  1916年   1篇
排序方式: 共有108条查询结果,搜索用时 15 毫秒
1.
Peroxisomes of the rat cardiac and soleus muscles increase after starvation   总被引:1,自引:1,他引:0  
Summary We have investigated the change of catalase activity in the homogenates of rat cardiac and skeletal muscles. After 7 days' starvation, the catalase activity of heart increased about 3-fold and that of soleus muscle enhanced 2-fold higher than that of control rats. Immunoblot analysis of catalase showed a single band in the homogenates of cardiac and soleus muscles and increase of catalase antigen after starvation. Light microscopic immunoenzyme staining showed that after starvation catalase positive granules markedly increased in both the cardiac and soleus muscle. Quantitative analysis of the staining showed that number of the granules per 100 m2 of tissue section was about 1.4-fold in the soleus muscle and 1.7-fold in the cardiac muscle after starvation. By electron microscopy of alkaline DAB staining, we confirmed that the granules were peroxisomes, which increased in both number and size. Furthermore, we stained the peroxisomes for catalase by a protein A-gold technique. Labeling density (gold particles/m2) of the cardiac and soleus muscles from the starved rat increased approximately 1.4 times as much as that of normal animal. When the numerical density is multiplied by the labeling density, the values are largely consistent with the enhancement of catalase activity. These results show that increase in the catalase activity of the muscle tissue after starvation is caused by increase in number and size of peroxisomes.  相似文献   
2.
Two forms of superoxide dismutase, CuZn-SOD and MnSOD, have been investigated in the kidneys of streptozotocin-induced diabetic rats using both radio-immunoassay and immunoenzyme staining. The rats were killed 2, 8 and 12 weeks after the induction of diabetes mellitus and the kidneys excised. Two weeks after the induction of diabetes, the kidneys were hypertrophied because of the proliferation of renal tubular epithelium. However, the total CuZnSOD content of the kidneys did not increase and, because of the epithelial proliferation, the CuZnSOD concentration in each proximal tubular cell was decreased. Armanni-Ebstein lesions were found in the distal tubules 8 and 12 weeks after the induction of diabetes. The cells in these lesions were intensely stained for CuZnSOD, suggesting an adaptive response to the enhanced oxidative stress. The MnSOD staining in the thick ascending limbs of Henle's loops was enhanced in the diabetic kidneys, while that in the cortical tubules was unaltered. MnSOD was assumed to increase in response to hypermetabolism associated with the proliferation of renal tubules. This was most marked in the cells which were rich in mitochondria, again suggesting an adaptive response to enhanced oxidative stress induced by diabetes mellitus. The glomeruli of both the diabetic and control groups were not stained for SODs, and no significant microscopic change was found even 12 weeks after the induction of diabetes mellitus.  相似文献   
3.
The sre gene (ORF469) of the R4 phage encodes a protein similar to the resolvase-DNA invertase family proteins. Insertional gene disruption of sre prevented a lysogen from entering the lytic cycle, implying that Sre protein is a site-specific recombinase needed for excision of the R4 prophage genome (M. Matsuura, T. Noguchi, T. Aida, M. Asayama, H. Takahashi, and M. Shirai, J. Gen. Appl. Microbiol. 41:53-61, 1995). To determine whether this sre gene is also necessary for the integration reaction, we studied its function by integration plasmid analysis. When deletions, frameshifts, and site-directed mutations that caused an amino acid substitution of Ser-17 for Ala were introduced into the sre structural gene, transformation efficiency of Streptomyces parvulus 2297 with these plasmid DNAs was severely reduced. However, an adenine insertion just before the possible initiation codon of the sre gene did not significantly decrease the efficiency. These data suggest that the Sre protein is a site-specific recombinase responsible for integration of the R4 phage genome.  相似文献   
4.
Abstract Microcystis aeruginosa (Synechocystis ) is a unicellular cyanobacterium that performs oxygenic photosynthesis. We found two novel sets of repetitive sequences, A (REP-A) and B (REP-B), on the M. aeruginosa K-81 genomic DNA, which consisted of distinct motifs of tandem repeated sequences located in the up- and downstream regions of the orf1 structural gene, respectively. Genomic Southern hybridization revealed multicopies of REP-A and -B on the genome. Furthermore, genomic Southern blots of cyanobacteria species with the REP-A and -B probes revealed that different hybridization signals appeared on the genomic DNAs of all 12 Microcystis strains, but no signal appeared on those of Synechocystis sp. PCC 6803, Synechococcus sp. PCC 7942, and Anabaena sp. PCC 7120.  相似文献   
5.
Summary To quantitate the developmental changes in selenium-dependent cellular glutathione peroxidase during the perinatal period, tissue sections from foetal (day 12 to day 22) and neonatal (day 6) rats were stained immunohistochemically using specific polyclonal antiserum. The intensity of the staining was quantified by fluorescence microscopy image analysis. There was a general trend of enriched glutathione peroxidase in the epithelial linings and metabolically active sites. Significant fluorescence was detected in cardiomyocytes, hepatocytes, renal tubular epithelium, bronchiolar epithelium and intestinal epithelium at day 15. The intensity increased in a stepwise manner therafter. The overall increase in the intensity of staining in the heart, liver, kidneys, lungs and intestine was 1.5-, 2.3-, 1.6-, 1.7- and 3.0-fold, respectively. The phase of most rapid increase occurred during the foetal period in the liver, intestine and heart. In the kidneys and lungs, glutathione peroxidase increased significantly during foetal life, and to a similar extent postnatally. These results suggest that the intracellular H2O2-scavenging system develops during the foetal period as an essential mechanism for living under atmospheric oxygen conditions. The late development observed in the kidneys and lungs is consistent with the relative biological immaturity of these organs in full-term neonates.  相似文献   
6.
7.
8.
In this study, by using highly purified rat liver peroxisomes, we provide evidence from analytical cell fractionation, Western blot, and immunocytochemical analysis that Cu-Zn superoxide dismutase is present in animal peroxisomes. Treatment with ciprofibrate, a peroxisome proliferator, increased the peroxisomal superoxide dismutase activity by 3-fold with no effect on mitochondrial activity but a marked decrease in cytosolic superoxide dismutase activity, further supporting that besides cytosolic and mitochondrial localization, Cu-Zn superoxide dismutase is present in peroxisomes also. Demonstration of superoxide dismutase in peroxisomes suggests a new role for this organelle in pathophysiological conditions, such as ischemia-reperfusion injury.  相似文献   
9.
The colony-forming ability of haematopoietic cells of W anaemic mice was examined on the macrophage layer formed in the peritoneal cavity of mice. Bone marrow cells of W anaemic mice formed a considerable number of colonies on the macrophage layer, notwithstanding they did not form any colonies in the spleen of the same recipients. As the colony-forming ability of the bone marrow cells was not reduced by the incubation with 3H-thymidine, most of the cells which formed colonies on the macrophage layer seemed to stay in G0 state. The interrelationship between the spleen colony-forming cells, the macrophage-layer colony-forming cells, and in vitro colony-forming cells was discussed.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号