首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   158篇
  免费   9篇
  167篇
  2023年   2篇
  2022年   4篇
  2021年   6篇
  2020年   7篇
  2019年   4篇
  2018年   8篇
  2017年   3篇
  2016年   6篇
  2015年   12篇
  2014年   11篇
  2013年   14篇
  2012年   11篇
  2011年   14篇
  2010年   12篇
  2009年   8篇
  2008年   4篇
  2007年   9篇
  2006年   8篇
  2005年   8篇
  2004年   3篇
  2003年   1篇
  2002年   2篇
  2000年   1篇
  1998年   1篇
  1993年   1篇
  1990年   1篇
  1985年   1篇
  1981年   1篇
  1977年   2篇
  1972年   1篇
  1967年   1篇
排序方式: 共有167条查询结果,搜索用时 15 毫秒
1.
Some individuals remain HIV-1 antibody and PCR negative after repeated exposures to the virus, and are referred to as HIV-exposed seronegatives (HESN). However, the causes of resistance to HIV-1 infection in cases other than those with a homozygous CCR5Δ32 deletion are unclear. We hypothesized that human p21WAF1/CIP1 (a cyclin-dependent kinase inhibitor) could play a role in resistance to HIV-1 infection in HESN, as p21 expression has been associated with suppression of HIV-1 in elite controllers and reported to block HIV-1 integration in cell culture. We measured p21 RNA expression in PBMC from 40 HESN and 40 low exposure HIV-1 seroconverters (LESC) prior to their infection using a real-time PCR assay. Comparing the 20 HESN with the highest exposure risk (median = 111 partners/2.5 years prior to the 20 LESC with the lowest exposure risk (median = 1 partner/2.5 years prior), p21 expression trended higher in HESN in only one of two experiments (P = 0.11 vs. P = 0.80). Additionally, comparison of p21 expression in the top 40 HESN (median = 73 partners/year) and lowest 40 LESC (median = 2 partners/year) showed no difference between the groups (P = 0.84). There was a weak linear trend between risk of infection after exposure and increasing p21 gene expression (R2 = 0.02, P = 0.12), but again only in one experiment. Hence, if p21 expression contributes to the resistance to viral infection in HESN, it likely plays a minor role evident only in those with extremely high levels of exposure to HIV-1.  相似文献   
2.
Although the process for making EN 14214 grade Jatropha methyl ester (biodiesel) capable of running unmodified diesel engines in neat form has been demonstrated, getting higher seed yield from Jatropha shrubs in wastelands is critical to the success of Jatropha biodiesel. But, low productivity is inherent to many Jatropha curcas germplasms and raising large-scale plantations using such untested planting material can lead to wasteful expenditures. Unreliable and poor flowering and fruiting are important factors responsible for low productivity in the species. Although much is known about growth retardants applied to field and horticultural crops, their role in improving the seed productivity of Jatropha has never been explored. Here we report for the first time that paclobutrazol could be an extremely useful chemical, whose dose and time of application, if optimized, can significantly reduce unwanted vegetative growth, with concomitant improvement in yield and seed oil content of Jatropha. In the year following application of paclobutrazol, an unexpected increase in seed yield, as high as 1127% relative to controls, was obtained from one such unproductive Jatropha germplasm. We hypothesize that low seed production in this species may be a result of excess vegetative growth caused by an unfavorable endogenous hormonal configuration which competes with growth and development of flower, fruit, or seed. This undesired physiological state can be reversed by paclobutrazol application to achieve maximum oil yield from this energy shrub that holds great promise in the future.  相似文献   
3.
A variety of 1,3‐dihydro‐2H‐1,4‐benzodiazepin‐2‐one azomethines and 1,3‐dihydro‐2H‐1,4‐benzodiazepin‐2‐one benzamide were prepared, characterized and evaluated for the anticonvulsant activity in the rat using picrotoxin‐induced seizure model. The prepared 1,3‐dihydro‐2H‐1,4‐benzodiazepin‐2‐one azomethine derivatives emerged potentially anticonvulsant molecular scaffolds exemplified by compounds, 7‐{(E)‐[(4‐nitrophenyl)methylidene]amino}‐5‐phenyl‐1,3‐dihydro‐2H‐1,4‐benzodiazepin‐2‐one, 7‐[(E)‐{[4‐(dimethylamino)phenyl]methylidene}amino]‐5‐phenyl‐1,3‐dihydro‐2H‐1,4‐benzodiazepin‐2‐one, 7‐{(E)‐[(4‐bromo‐2,6‐difluorophenyl)methylidene]amino}‐5‐phenyl‐1,3‐dihydro‐2H‐1,4‐benzodiazepin‐2‐one and 7‐[(E)‐{[3‐(4‐fluorophenyl)‐1‐phenyl‐1H‐pyrazol‐4‐yl]methylidene}amino]‐5‐phenyl‐1,3‐dihydro‐2H‐1,4‐benzodiazepin‐2‐one. All these four compounds have shown substantial decrease in the wet dog shake numbers and grade of convulsions with respect to the standard drug diazepam. The most active compound, 7‐[(E)‐{[4‐(dimethylamino)phenyl]methylidene}amino]‐5‐phenyl‐1,3‐dihydro‐2H‐1,4‐benzodiazepin‐2‐one, exhibited 74 % protection against convulsion which was higher than the standard drug diazepam. Furthermore, to identify the binding mode of the interaction amongst the target analogs and binding site of the benzodiazepine receptor, molecular docking study and molecular dynamic simulation were carried out. Additionally, in silico pharmacokinetic and toxicity predictions of target compounds were carried out using AdmetSAR tool. Results of ADMET studies suggest that the pharmacokinetic parameters of all the target compounds were within the acceptable range to become a potential drug candidate as antiepileptic agents.  相似文献   
4.
We have optimized a procedure for genetic transformation of a major leafy vegetable crop, Amaranthus tricolor L., using epicotyl explant co-cultivation with Agrobacterium tumefaciens. Two disarmed A. tumefaciens strains EHA 105 and LBA 4404, both carrying the binary plasmid p35SGUSINT harboring the neomycin phosphotransferase II gene (nptII) and the β-glucuronidase gene (gus), were evaluated as vector systems. The former displayed a higher transforming efficiency. Several key factors influencing the transformation events were optimized. The highest percentage of transformed shoots (24.24%) was achieved using hand-pricked epicotyl explants, a 10-min infection period, with 100 μM acetosyringone-pretreated Agrobacterium culture corresponding to OD600???0.6 and diluted to 109 cells ml?1, followed by 4 d co-cultivation in the regeneration medium. Putative transformed explants capable of forming shoots were selected on medium supplemented with 75 μg?ml?1 kanamycin, and transient as well as stable glucuronidase expression was determined by histochemical analysis. From a total of 48 selected shoot lines derived from independent transformation events with epicotyl explants co-cultivated with EHA 105, 32 showed positive PCR amplification for both the nptII and gus genes. Germ line transformation and transgene stability were evident in progeny of primary transformed plants (T0). Among T1 seedlings of 12 selected transgenic plant lines, kanamycin-resistant and kanamycin-sensitive seedlings segregated in a ratio typical of the Mendelian monohybrid pattern (3:1) as verified by the chi-square (χ 2) test. Southern hybridization of genomic DNA from kanamycin-resistant T1 transgenic segregants to an nptII probe substantiated stable integration of the transgene. Neomycin phosphotransferase (NPTII) activity was detected in leaf protein extracts of selected T1 transgenic plants, thereby confirming stable expression of the nptII gene.  相似文献   
5.
Thymocytes convert graded T cell receptor (TCR) signals into positive selection or deletion, and activation of extracellular signal-related kinase (ERK), p38, and Jun N-terminal protein kinase (JNK) mitogen-activated protein kinases (MAPKs) has been postulated to play a discriminatory role. Two families of Ras guanine nucleotide exchange factors (RasGEFs), SOS and RasGRP, activate Ras and the downstream RAF-MEK-ERK pathway. The pathways leading to lymphocyte p38 and JNK activation are less well defined. We previously described how RasGRP alone induces analog Ras-ERK activation while SOS and RasGRP cooperate to establish bimodal ERK activation. Here we employed computational modeling and biochemical experiments with model cell lines and thymocytes to show that TCR-induced ERK activation grows exponentially in thymocytes and that a W729E allosteric pocket mutant, SOS1, can only reconstitute analog ERK signaling. In agreement with RasGRP allosterically priming SOS, exponential ERK activation is severely decreased by pharmacological or genetic perturbation of the phospholipase Cγ (PLCγ)-diacylglycerol-RasGRP1 pathway. In contrast, p38 activation is not sharply thresholded and requires high-level TCR signal input. Rac and p38 activation depends on SOS1 expression but not allosteric activation. Based on computational predictions and experiments exploring whether SOS functions as a RacGEF or adaptor in Rac-p38 activation, we established that the presence of SOS1, but not its enzymatic activity, is critical for p38 activation.  相似文献   
6.
DM catalyzes the exchange of peptides bound to Class II major histocompatibility complex (MHC) molecules. Because the dissociation and association components of the overall reaction are difficult to separate, a detailed mechanism of DM catalysis has long resisted elucidation. UV irradiation of DR molecules loaded with a photocleavable peptide (caged Class II MHC molecules) enabled synchronous and verifiable evacuation of the peptide-binding groove and tracking of early binding events in real time by fluorescence polarization. Empty DR molecules generated by photocleavage rapidly bound peptide but quickly resolved into species with substantially slower binding kinetics. DM formed a complex with empty DR molecules that bound peptide with even faster kinetics than empty DR molecules just having lost their peptide cargo. Mathematical models demonstrate that the peptide association rate of DR molecules is substantially higher in the presence of DM. We therefore unequivocally establish that DM contributes directly to peptide association through formation of a peptide-loading complex between DM and empty Class II MHC. This complex rapidly acquires a peptide analogous to the MHC class I peptide-loading complex.  相似文献   
7.
8.
Coronary artery disease (CAD) is one of the major cardiovascular diseases affecting the global human population. This disease has been proved to be the major cause of death in both the developed and developing countries. Lifestyle, environmental factors, and genetic factors pose as risk factors for the development of cardiovascular disease. The prevalence of risk factors among healthy individuals elucidates the probable occurrence of CAD in near future. Genome-wide association studies have suggested the association of chromosome 9p21.3 in the premature onset of CAD. The risk factors of CAD include diabetes mellitus, hypertension, smoking, hyperlipidemia, obesity, homocystinuria, and psychosocial stress. The eradication and management of CAD has been established through extensive studies and trials. Antiplatelet agents, nitrates, β-blockers, calcium antagonists, and ranolazine are some of the few therapeutic agents used for the relief of symptomatic angina associated with CAD.  相似文献   
9.
Microalgal biomass seems to be one of the potential alternative feedstocks for the production of various types of biofuel. In the present study, first of all, suitable growth media and harvesting time were determined for the freshwater chlorophyte microalga Acutodesmus dimorphus. Cultivation of A. dimorphus in BG-11 medium for 15 days resulted in the highest biomass productivity with 24.60 % lipid and 22.78 % carbohydrate contents. Further, thermotolerance property of A. dimorphus was evaluated by heat stressing the cells at 45 °C and 50 °C up to 24 h and determining the cell mortality and pigment composition along with lipid and carbohydrate contents. Chlorophyll and carotenoid contents of cells significantly increased after heat stress at 45 °C. Increasing the heat stress from 8 to 24 h increased the dead cells by 3–4 % at both temperatures, which shows the thermotolerance of A. dimorphus. Lipid content of 27 % and carbohydrate content of 26–28 % even after 24 h of heat stress at 45 and 50 °C suggest A. dimorphus as a potential feedstock for biofuel production.  相似文献   
10.
The synthesis of single‐crystalline β‐CsPbI3 perovskite nanorods (NRs) using a colloidal process is reported, exhibiting their improved photostability under 45–55% humidity. The crystal structure of CsPbI3 NRs films is investigated using Rietveld refined X‐ray diffraction (XRD) patterns to determine crystallographic parameters and the phase transformation from orthorhombic (γ‐CsPbI3) to tetragonal (β‐CsPbI3) on annealing at 150 °C. Atomic resolution transmission electron microscopy images are utilized to determine the probable atomic distribution of Cs, Pb, and I atoms in a single β‐phase CsPbI3 NR, in agreement with the XRD structure and selected area electron diffraction pattern, indicating the growth of single crystalline β‐CsPbI3 NR. The calculation of the electronic band structure of tetragonal β‐CsPbI3 using density functional theory (DFT) reveals a direct transition with a lower band gap and a higher absorption coefficient in the solar spectrum, as compared to its γ‐phase. An air‐stable (45–55% humidity) inverted perovskite solar cell, employing β‐CsPbI3 NRs without any encapsulation, yields an efficiency of 7.3% with 78% enhancement over the γ‐phase, showing its potential for future low cost photovoltaic devices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号