首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   2篇
  2020年   2篇
  2018年   1篇
  2017年   3篇
  2016年   1篇
  2015年   1篇
  2013年   3篇
  2012年   4篇
  2011年   4篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2005年   1篇
  2004年   2篇
  2001年   1篇
  2000年   1篇
  1972年   1篇
排序方式: 共有30条查询结果,搜索用时 15 毫秒
1.
The redox unbalance in erythrocytes has been found to contribute significantly in the development of anemia in visceral leishmaniasis (VL). The present study revealed enhanced production of reactive oxygen species (ROS) and gradual depletion of α-tocopherol and ascorbate in the erythrocytes of infected animals. The response of erythrocytes to chronic treatment with antioxidants was studied in hamsters during leishmanial infection. Treatment with a combination of α-tocopherol and ascorbate proved to be the most effective preventive for the proteolytic degradation of erythrocyte membrane. Erythrocytes from infected animals were thermally more sensitive compared to the control ones. Combination of both antioxidants was most successful in resisting heat induced structural defects in the cells. Cross-linking of membrane proteins subsequent to oxidative damage in the red cells was accompanied by the formation of high molecular weight protein band at the top of the resolving gel in the presence of the cross-linking agent dimethyladepimidate (DMA). Marked inhibition of cross-linking was observed with combination of both antioxidants. Treatment with α-tocopherol and ascorbate together could withstand osmotic lysis of erythrocytes in the infected animals very efficiently. Decreased hemoglobin (Hb) level was successfully replenished and was coupled with significant increase in the life span of red cells after treating the animals with both antioxidants. Results indicate better efficacy of the combination therapy with α-tocopherol and ascorbate in protecting the erythrocytes from structural and functional damages during leishmanial infection.  相似文献   
2.
The redox unbalance in erythrocytes has been found to contribute significantly in the development of anemia in visceral leishmaniasis (VL). The present study revealed enhanced production of reactive oxygen species (ROS) and gradual depletion of alpha-tocopherol and ascorbate in the erythrocytes of infected animals. The response of erythrocytes to chronic treatment with antioxidants was studied in hamsters during leishmanial infection. Treatment with a combination of alpha-tocopherol and ascorbate proved to be the most effective preventive for the proteolytic degradation of erythrocyte membrane. Erythrocytes from infected animals were thermally more sensitive compared to the control ones. Combination of both antioxidants was most successful in resisting heat induced structural defects in the cells. Cross-linking of membrane proteins subsequent to oxidative damage in the red cells was accompanied by the formation of high molecular weight protein band at the top of the resolving gel in the presence of the cross-linking agent dimethyladepimidate (DMA). Marked inhibition of cross-linking was observed with combination of both antioxidants. Treatment with alpha-tocopherol and ascorbate together could withstand osmotic lysis of erythrocytes in the infected animals very efficiently. Decreased hemoglobin (Hb) level was successfully replenished and was coupled with significant increase in the life span of red cells after treating the animals with both antioxidants. Results indicate better efficacy of the combination therapy with alpha-tocopherol and ascorbate in protecting the erythrocytes from structural and functional damages during leishmanial infection.  相似文献   
3.
Programmed cell death (PCD) functions in the developmental remodeling of leaf shape in higher plants, a process analogous to digit formation in the vertebrate limb. In this study, we provide a cytological characterization of the time course of events as PCD remodels young expanding leaves of the lace plant. Tonoplast rupture is the first PCD event in this system, indicated by alterations in cytoplasmic streaming, loss of anthocyanin color, and ultrastructural appearance. Nuclei become terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling positive soon afterward but do not become morphologically altered until late stages of PCD. Genomic DNA is fragmented, but not into internucleosomal units. Other cytoplasmic changes, such as shrinkage and degradation of organelles, occur later. This form of PCD resembles tracheary element differentiation in cytological execution but requires unique developmental regulation so that discrete panels of tissue located equidistantly between veins undergo PCD while surrounding cells do not.  相似文献   
4.
Porins, a major class of outer membrane proteins in Gram-negative bacteria, primarily act as transport channels. OmpU is one of the major porins of human pathogen, Vibrio cholerae. In the present study, we show that V. cholerae OmpU has the ability to induce target cell death. Although OmpU-mediated cell death shows some characteristics of apoptosis, such as flipping of phosphatidylserine in the membrane as well as cell size shrinkage and increased cell granularity, it does not show the caspase-3 activation and DNA laddering pattern typical of apoptotic cells. Increased release of lactate dehydrogenase in OmpU-treated cells indicates that the OmpU-mediated cell death also has characteristics of necrosis. Further, we show that the mechanism of OmpU-mediated cell death involves major mitochondrial changes in the target cells. We observe that OmpU treatment leads to the disruption of mitochondrial membrane potential, resulting in the release of cytochrome c and apoptosis-inducing factor (AIF). AIF translocates to the host cell nucleus, implying that it has a crucial role in OmpU-mediated cell death. Finally, we observe that OmpU translocates to the target cell mitochondria, where it directly initiates mitochondrial changes leading to mitochondrial membrane permeability transition and AIF release. Partial blocking of AIF release by cyclosporine A in OmpU-treated cells further suggests that OmpU may be inducing the opening of the mitochondrial permeability transition pore. All of these results lead us to the conclusion that OmpU induces cell death in target cells in a programmed manner in which mitochondria play a central role.  相似文献   
5.
6.
The unusual perforations in the leaf blades of Monstera obliqua (Araceae) arise through programmed cell death early in leaf development. At each perforation site, a discrete subpopulation of cells undergoes programmed cell death simultaneously, while neighboring protoderm and ground meristem cells are unaffected. Nuclei of cells within the perforation site become terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-positive, indicating that DNA cleavage is an early event. Gel electrophoresis indicates that DNA cleavage is random and does not result in bands that represent multiples of internucleosomal units. Ultrastructural analysis of cells at the same stage reveals misshapen, densely stained nuclei with condensed chromatin, disrupted vacuoles, and condensed cytoplasm. Cell walls within the perforation site remain intact, although a small disk of dying tissue becomes detached from neighboring healthy tissues as the leaf expands and stretches the minute perforation. Exposed ground meristem cells at the rim of the perforation differentiate as epidermal cells. The cell biology of perforation formation in Monstera resembles that in the aquatic plant Aponogeton madagascariensis (Aponogetonaceae; Gunawardena et al. 2004), but the absence of cell wall degradation and the simultaneous execution of programmed cell death throughout the perforation site reflect the convergent evolution of this distinct mode of leaf morphogenesis in these distantly related plants.  相似文献   
7.
Programmed cell death (PCD) plays a major role in plant development and defense throughout the plant kingdom. Within animal systems, it is well accepted that caspases play a major role in the PCD process, although no true caspases have yet to be identified in plants. Despite this, vast amounts of evidence suggest the existence of caspase-like proteases in plants. The lace plant (Aponogeton madagascariensis) forms perforations in a predictable pattern between longitudinal and transverse veins over its entire leaf surface via PCD. Due to the thin nature of the leaf, allowing for long-term live cell imaging, a perfected method for sterile culture, as well as the feasibility of pharmacological experiments, the lace plant provides an excellent model to study developmental PCD. In this review, we report the suitability of the lace plant as a novel organism to study proteases in vivo during developmentally regulated cell death.  相似文献   
8.
9.
10.
The lower oxygen limit (LOL) in plants may be identified through the measure of respiratory gases [i.e. the anaerobic compensation point (ACP) or the respiratory quotient breakpoint (RQB)], but recent work shows it may also be identified by a sudden rise in dark minimum fluorescence (F o). The interrelationship between aerobic respiration and fermentative metabolism, which occur in the mitochondria and cytosol, respectively, and fluorescence, which emanates from the chloroplasts, is not well documented in the literature. Using spinach (Spinacia oleracea), this study showed that Fo and photochemical quenching (q P) remained relatively unchanged until O2 levels dropped below the LOL. An over-reduction of the plastoquinone (PQ) pool is believed to increase F o under dark + anoxic conditions. It is proposed that excess cytosolic reductant due to inhibition of the mitochondria’s cytochrome oxidase under low-O2, may be the primary reductant source. The maximum fluorescence (F m) is largely unaffected by low-O2 in the dark, but was severely quenched, mirroring changes to the xanthophyll de-epoxidation state (DEPS), under even low-intensity light (≈4 μmol m−2 s−1). In low light, the low-O2-induced increase in F o was also quenched, likely by non-photochemical and photochemical means. The degree of quenching in the light was negatively correlated with the level of ethanol fermentation in the dark. A discussion detailing the possible roles of cyclic electron flow, the xanthophyll cycle, chlororespiration and a pathway we termed ‘chlorofermentation’ were used to interpret fluorescence phenomena of both spinach and apple (Malus domestica) over a range of atmospheric conditions under both dark and low-light.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号