首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63篇
  免费   4篇
  2022年   1篇
  2021年   1篇
  2020年   3篇
  2019年   3篇
  2018年   4篇
  2016年   1篇
  2015年   3篇
  2014年   2篇
  2013年   5篇
  2012年   4篇
  2011年   4篇
  2010年   2篇
  2009年   3篇
  2008年   2篇
  2007年   1篇
  2006年   2篇
  2005年   3篇
  2004年   3篇
  2003年   4篇
  2002年   2篇
  2001年   4篇
  2000年   6篇
  1999年   2篇
  1998年   1篇
  1992年   1篇
排序方式: 共有67条查询结果,搜索用时 15 毫秒
1.
Aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1) is a photoreceptor specific chaperone of the visual effector enzyme phosphodiesterase-6 (PDE6). AIPL1 has been shown to bind the farnesylated PDE6A subunit. Mutations in AIPL1 are thought to destabilize PDE6 and thereby cause Leber congenital amaurosis type 4 (LCA4), a severe form of childhood blindness. Here, we examined the solution structure of AIPL1 by small angle x-ray scattering. A structural model of AIPL1 with the best fit to the scattering data features two independent FK506-binding protein (FKBP)-like and tetratricopeptide repeat domains. Guided by the model, we tested the hypothesis that AIPL1 directly binds the farnesyl moiety. Our studies revealed high affinity binding of the farnesylated-Cys probe to the FKBP-like domain of AIPL1, thus uncovering a novel function of this domain. Mutational analysis of the potential farnesyl-binding sites on AIPL1 identified two critical residues, Cys-89 and Leu-147, located in close proximity in the structure model. The L147A mutation and the LCA-linked C89R mutation prevented the binding of the farnesyl-Cys probe to AIPL1. Furthermore, Cys-89 and Leu-147 flank the unique insert region of AIPL1, deletion of which also abolished the farnesyl interaction. Our results suggest that the binding of PDE6A farnesyl is essential to normal function of AIPL1 and its disruption is one of the mechanisms underlying LCA.  相似文献   
2.
Russian Journal of Bioorganic Chemistry - The discovery of fluorescent proteins (FP) in 1962 and the following design of genetically encoded biomarkers and biosensors revolutionized the study of...  相似文献   
3.
RGS9, a member of the family of regulators of G protein signaling (RGS), serves as a GTPase-activating protein (GAP) for the transducin alpha-subunit (Gtalpha) in the vertebrate visual transduction cascade. The GAP activity of RGS9 is uniquely potentiated by the gamma-subunit of the effector enzyme, cGMP-phosphodiesterase (Pgamma). In contrast, Pgamma attenuates the GAP effects of several other RGS proteins, including RGS16. We demonstrate here that the Pgamma subunit exerts its effects on the GTPase activity of the Gtalpha-RGS complex via the C-terminal domain, Pgamma-63-87. The structural determinants that control the direction of Pgamma effects on the RGS-Gtalpha system are localized within the RGS domains. The addition of Pgamma caused an increase in the maximal stimulation of Gtalpha GTPase activity by RGS9d without affecting the EC50 value. Modulation of Gtalpha GTPase activity by chimeric RGS16 and RGS9 proteins and Pgamma has been investigated. This analysis suggests that in addition to the differences in primary structures, the overall conformations of the RGS fold in RGS9 and RGS16 are likely to be responsible for the opposite effects of Pgamma on the RGS9 and RGS16 GAP activity. The RGS9 alpha3-alpha5 region constituted the minimal insertion of the RGS9 domain into RGS16 that reversed the inhibitory effect of Pgamma. A model of the RGS9 complex with Gtalpha shows the alpha3-alpha5 helices in RGS9 facing the proximate Pgamma binding site on Gtalpha. Our results and this model demonstrate that the mechanism of potentiation of RGS9 GAP activity by Pgamma involves a more rigid stabilization of the Gtalpha switch regions when Gtalpha is bound to both RGS9 and Pgamma.  相似文献   
4.
A novel gain-of-function mutation, R243Q, has been recently identified in the Candida elegans Gqalpha protein EGL-30. The position corresponding to Arg243 in EGL-30 is absolutely conserved among heterotrimeric G proteins. This mutation appears to be the first gain-of-function mutation in the switch III region of Galpha subunits. To investigate consequences of the R-->Q mutation we introduced the corresponding R238Q mutation into transducin-like Gtalpha* subunit. The mutant retained intact interactions with Gtbetagamma and rhodopsin but exhibited a twofold reduction in the kcat value for guanosine 5'-triphosphate (GTP) hydrolysis. The GTPase activity of R238Q was not accelerated by the RGS domain of the visual GTPase-activating protein, RGS9-1. In addition, R238Q displayed a significant impairment in the effector function. Our data and the crystal structures of transducin suggest that the major reason for the reduced intrinsic GTPase activity of R238Q and the lack of RGS9 function is the break of the conserved ionic contact between Arg238 and Glu39, which apparently stabilizes the transitional state for GTP hydrolysis. We hypothesize that the R243Q mutation in EGL-30 severs the ionic interaction of Arg243 with Glu43, leading to a defective inactivation of the mutant by the C. elegans RGS protein EAT-16.  相似文献   
5.
Three cytoplasmic loops in the G protein-coupled receptor rhodopsin, C2, C3, and C4, have been implicated as key sites for binding and activation of the visual G protein transducin. Non-helical portions of the C2- and C3-loops and the cytoplasmic helix-8 from the C4 loop were targeted for a "gain-of-function" mutagenesis to identify rhodopsin residues critical for transducin activation. Mutant opsins with residues 140-148 (C2-loop), 229-244 (C3-loop), or 310-320 (C4-loop) substituted by poly-Ala sequences of equivalent lengths served as templates for mutagenesis. The template mutants with poly-Ala substitutions in the C2- and C3-loops formed the 500-nm absorbing pigments but failed to activate transducin. Reverse substitutions of the Ala residues by rhodopsin residues have been generated in each of the templates. Significant ( approximately 50%) restoration of the rhodopsin/transducin coupling was achieved with re-introduction of residues Cys140/Lys141 and Arg147/Phe148 into the C2 template. The reverse substitutions of the C3-loop residues Thr229/Val230 and Ser240/Thr242/Thr243/Gln244 produced a pigment with a full capacity for transducin activation. The C4 template mutant was unable to bind 11-cis-retinal, and the presence of Asn310/Lys311 was required for correct folding of the protein. Subsequent mutagenesis of the C4-loop revealed the role of Phe313 and Met317. On the background of Asn310/Lys311, the inclusion of Phe313 and Met317 produced a mutant pigment with the potency of transducin activation equal to that of the wild-type rhodopsin. Overall, our data support the role of the three cytoplasmic loops of rhodopsin and suggest that residues adjacent to the transmembrane helices are most important for transducin activation.  相似文献   
6.
Muradov KG  Artemyev NO 《Biochemistry》2000,39(14):3937-3942
The N-terminal regions of the heterotrimeric G-protein alpha-subunits represent one of the major Gbetagamma contact sites and have been implicated in an interaction with G-protein-coupled receptors. To probe the role of the N-terminal domain of transducin-alpha in G-protein function, a chimeric Gtialpha subunit with the 31 N-terminal Gtalpha residues replaced by the corresponding 42 residues of Gsalpha (Ns-Gtialpha) has been examined for the interaction with light-activated rhodopsin (R). Gtialpha displayed a somewhat higher R-stimulated rate of GTPgammaS binding relative to Ns-Gtialpha, suggesting modest involvement of the Gtalpha N-terminal sequence in recognition of the receptor. However, the intrinsic rate of nucleotide exchange in Ns-Gtialpha was significantly faster (k(app) = 0.014 min(-)(1)) than that in Gtialpha (k(app) = 0.0013 min(-1)) as judged by the GTPgammaS binding rates. Substitution of 42 N-terminal residues of Gsalpha by the Gtalpha residues in a reciprocal chimera, Nt-Gsalpha, had an opposite effect-notable reduction in the intrinsic GTPgammaS-binding rate (k(app) = 0.0075 min(-)(1)) in comparison with Gsalpha (k(app) = 0.028 min(-)(1)). Residue Val30 (His41 in Gsalpha) within the N-terminal region of Gtalpha interacts with the C-terminal residue, Ile339. To test the hypothesis that observed changes in the intrinsic nucleotide exchange rate in chimeric Galpha subunits might be attributed to this interaction, GtialphaVal30His, GtialphaIle339Ala, and Ns-GtialphaHis41Val mutants have been made and analyzed for basal GTPgammaS binding. GtialphaVal30His and GtialphaIle339Ala had increased GTPgammaS binding rates (k(app) = 0. 010 and 0.009 min(-)(1), respectively), whereas Ns-GtialphaHis41Val had a decreased GTPgammaS binding rate (k(app) = 0.0011 min(-)(1)) relative to their parent proteins. These results suggest that the coupling between the N-terminal and C-terminal domains of Gtalpha is important for maintaining a low nucleotide exchange rate in unstimulated transducin.  相似文献   
7.
A number of recently discovered proteins that interact with the alpha subunits of G(i)-like G proteins contain homologous repeated sequences named G protein regulatory (GPR) motifs. Activator of G protein signaling 3 (AGS3), identified as an activator of the yeast pheromone pathway in the absence of the pheromone receptor, has a domain with four such repeats. To elucidate the potential mechanisms of regulation of G protein signaling by proteins containing GPR motifs, we examined the effects of the AGS3 GPR domain on the kinetics of guanine nucleotide exchange and GTP hydrolysis by G(i)alpha(1) and transducin-alpha (G(t)alpha). The AGS3 GPR domain markedly inhibited the rates of spontaneous guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS) binding to G(i)alpha and rhodopsin-stimulated GTPgammaS binding to G(t)alpha. The full-length AGS3 GPR domain, AGS3-(463-650), was approximately 30-fold more potent than AGS3-(572-629), containing two AGS3 GPR motifs. The IC(50) values for the AGS3-(463-650) inhibitory effects on G(i)alpha and transducin were 0.12 and 0.15 microm, respectively. Furthermore, AGS3-(463-650) and AGS3-(572-629) effectively blocked the GDP release from G(i)alpha and rhodopsin-induced dissociation of GDP from G(t)alpha. The potencies of AGS3-(572-629) and AGS3-(463-650) to suppress the GDP dissociation rates correlated with their ability to inhibit the rates of GTPgammaS binding. Consistent with the inhibition of nucleotide exchange, the AGS3 GPR domain slowed the rate of steady-state GTP hydrolysis by G(i)alpha. The catalytic rate of G(t)alpha GTP hydrolysis, measured under single turnover conditions, remained unchanged with the addition of AGS3-(463-650). Altogether, our results suggest that proteins containing GPR motifs, in addition to their potential role as G protein-coupled receptor-independent activators of Gbetagamma signaling pathways, act as GDP dissociation inhibitors and negatively regulate the activation of a G protein by a G protein-coupled receptor.  相似文献   
8.
9.
Local environmental and ecological conditions are commonly expected to result in local adaptation, although there are few examples of variation in phenotypic selection across continent‐wide spatial scales. We collected standardized data on selection with respect to the highly variable plumage coloration of pied flycatcher (Ficedula hypoleuca Pall.) males from 17 populations across the species' breeding range. The observed selection on multiple male coloration traits via the annual number of fledged young was generally relatively weak. The main aim of the present study, however, was to examine whether the current directional selection estimates are associated with distance to the sympatric area with the collared flycatcher (Ficedula albicollis Temminck), a sister species with which the pied flycatcher is showing character displacement. This pattern was expected because plumage traits in male pied flycatchers are changing with the distance to these areas of sympatry. However, we did not find such a pattern in current selection on coloration. There were no associations between current directional selection on ornamentation and latitude or longitude either. Interestingly, current selection on coloration traits was not associated with the observed mean plumage traits of the populations. Thus, there do not appear to be geographical gradients in current directional fecundity selection on male plumage ornamentation. The results of the present study do not support the idea that constant patterns in directional fecundity selection would play a major role in the maintenance of coloration among populations in this species. By contrast, the tendency for relatively weak mosaic‐like variation in selection among populations could reflect just a snapshot of temporally variable, potentially environment‐dependent, selection, as suggested by other studies in this system. Such fine‐grained variable selection coupled with gene flow could maintain extensive phenotypic variation across populations. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 114 , 808–827.  相似文献   
10.
Geographic variation in phenotypes plays a key role in fundamental evolutionary processes such as local adaptation, population differentiation and speciation, but the selective forces behind it are rarely known. We found support for the hypothesis that geographic variation in plumage traits of the pied flycatcher Ficedula hypoleuca is explained by character displacement with the collared flycatcher Ficedula albicollis in the contact zone. The plumage traits of the pied flycatcher differed strongly from the more conspicuous collared flycatcher in a sympatric area but increased in conspicuousness with increasing distance to there. Phenotypic differentiation (PST) was higher than that in neutral genetic markers (FST), and the effect of geographic distance remained when statistically controlling for neutral genetic differentiation. This suggests that a cline created by character displacement and gene flow explains phenotypic variation across the distribution of this species. The different plumage traits of the pied flycatcher are strongly to moderately correlated, indicating that they evolve non‐independently from each other. The flycatchers provide an example of plumage patterns diverging in two species that differ in several aspects of appearance. The divergence in sympatry and convergence in allopatry in these birds provide a possibility to study the evolutionary mechanisms behind the highly divergent avian plumage patterns.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号