首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
  2021年   1篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
  2012年   5篇
  2011年   2篇
  2009年   2篇
  2008年   1篇
  2006年   1篇
  1988年   1篇
排序方式: 共有16条查询结果,搜索用时 31 毫秒
1.
Tetra-cationic Zn(II) meso-tetrakis(N-alkylpyridinium-2 (or -3 or -4)-yl)porphyrins (ZnPs) with progressively increased lipophilicity were synthesized to investigate how the tri-dimensional shape and lipophilicity of the photosensitizer (PS) affect cellular uptake, subcellular distribution, and photodynamic efficacy. The effect of the tri-dimensional shape of the molecule was studied by shifting the N-alkyl substituent attached to the pyridyl nitrogen from ortho to meta and para positions. Progressive increase of lipophilicity from shorter hydrophilic (methyl) to longer amphiphilic (hexyl) alkyl chains increased the phototoxicity of the ZnP PSs. PS efficacy was also increased for all derivatives when the alkyl substituents were shifted from ortho to meta, and from meta to para positions. Both cellular uptake and subcellular distribution of the PSs were affected by the lipophilicity and the position of the alkyl chains on the periphery of the porphyrin ring. Whereas the hydrophilic ZnPs demonstrated mostly lysosomal distribution, the amphiphilic hexyl derivatives were associated with mitochondria, endoplasmic reticulum, and plasma membrane. A comparison of hexyl isomers revealed that cellular uptake and partition into membranes followed the order para > meta > ortho. Varying the position and length of the alkyl substituents affects (i) the exposure of cationic charges for electrostatic interactions with anionic biomolecules and (ii) the lipophilicity of the molecule. The charge, lipophilicity, and the tri-dimensional shape of the PS are the major factors that determine cellular uptake, subcellular distribution, and as a consequence, the phototoxicity of the PSs.  相似文献   
2.
3.
4.
5.
Mitochondria play a key role in aerobic ATP production and redox control. They harness crucial metabolic pathways and control cell death mechanisms, properties that make these organelles essential for survival of most eukaryotic cells. Cancer cells have altered cell death pathways and typically show a shift towards anaerobic glycolysis for energy production, factors which point to mitochondria as potential culprits in cancer development. Targeting mitochondria is an attractive approach to tumor control, but design of pharmaceutical agents based on rational approaches is still not well established. The aim of this study was to investigate which structural features of specially designed Zn(II)N-alkylpyridylporphyrins would direct them to mitochondria and to particular mitochondrial targets. Since Zn(II)N-alkylpyridylporphyrins can act as highly efficient photosensitizers, their localization can be confirmed by photodamage to particular mitochondrial components. Using cultured LS174T adenocarcinoma cells, we found that subcellular distribution of Zn-porphyrins is directed by the nature of the substituents attached to the meso pyridyl nitrogens at the porphyrin ring. Increasing the length of the aliphatic chain from one carbon (methyl) to six carbons (hexyl) increased mitochondrial uptake of the compounds. Such modifications also affected sub-mitochondrial distribution of the Zn-porphyrins. The amphiphilic hexyl derivative (ZnTnHex-2-PyP) localized in the vicinity of cytochrome c oxidase complex, causing its inactivation during illumination. Photoinactivation of critical cellular targets explains the superior efficiency of the hexyl derivative in causing mitochondrial photodamage, and suppressing cellular respiration and survival. Design of potent photosensitizers and redox-active scavengers of free radicals should take into consideration not only selective organelle uptake and localization, but also selective targeting of critical macromolecular structures.  相似文献   
6.
7.
Diol lipids (dioleoyl- and dioctanoylethylene glycol) at relatively low concentrations (approximately 10 microM) were found to activate significantly protein kinase C in the presence of phosphatidylserine or phosphatidylinositol. Since diol lipids are widespread minor lipid constituents of many cells [(1974) Chem. Ind., 597-604], it has been suggested that they may be involved in the maintaining of basal protein kinase C activity in the absence of external stimuli.  相似文献   
8.

Aims

Zinc deficiency is a common micronutrient deficiency in plants growing in many different regions of the world and is associated with disturbances in uptake and accumulation of mineral nutrients. Despite many published data on physiological factors affecting ion accumulation in Zn deficient plants, there is very little information about the genetic factors underlying this. We aim to identify genetic loci involved in mineral accumulation and plant performance under Zn deficiency.

Methods

Genetic loci were identified using the genetically segregating Ler × Cvi recombinant inbred line (RIL) population grown under Zn deficient conditions. Lines were analysed for the concentrations of Zn, Fe, Mn, K, Ca, Mg, P, Cu, S and Al in shoot dry matter. The same was done for the same lines grown under Zn sufficient conditions.

Results

We found considerable heritable variation for most mineral concentrations. In general, there was a positive correlation between mineral concentrations. For Zn only condition-dependent QTLs were identified, while for most other mineral concentrations both condition-dependent and -independent QTLs were identified. Several QTLs co-localize, including co-localization to loci controlling shoot biomass and to mineral concentration loci found previously in this and other RIL populations.

Conclusions

There are different genetic loci controlling Zn accumulation under deficient and sufficient Zn supply. Only for few minerals, their accumulation is controlled by Zn-supply-specific loci.  相似文献   
9.
Manganese superoxide dismutase, MnSOD and its mimics   总被引:1,自引:0,他引:1  
Increased understanding of the role of mitochondria under physiological and pathological conditions parallels increased exploration of synthetic and natural compounds able to mimic MnSOD - endogenous mitochondrial antioxidant defense essential for the existence of virtually all aerobic organisms from bacteria to humans. This review describes most successful mitochondrially-targeted redox-active compounds, Mn porphyrins and MitoQ(10) in detail, and briefly addresses several other compounds that are either catalysts of O(2)(-) dismutation, or its non-catalytic scavengers, and that reportedly attenuate mitochondrial dysfunction. While not a true catalyst (SOD mimic) of O(2)(-) dismutation, MitoQ(10) oxidizes O(2)(-) to O(2) with a high rate constant. In vivo it is readily reduced to quinol, MitoQH(2), which in turn reduces ONOO(-) to NO(2), producing semiquinone radical that subsequently dismutes to MitoQ(10) and MitoQH(2), completing the "catalytic" cycle. In MitoQ(10), the redox-active unit was coupled via 10-carbon atom alkyl chain to monocationic triphenylphosphonium ion in order to reach the mitochondria. Mn porphyrin-based SOD mimics, however, were designed so that their multiple cationic charge and alkyl chains determine both their remarkable SOD potency and carry them into the mitochondria. Several animal efficacy studies such as skin carcinogenesis and UVB-mediated mtDNA damage, and subcellular distribution studies of Saccharomyces cerevisiae and mouse heart provided unambiguous evidence that Mn porphyrins mimic the site and action of MnSOD, which in turn contributes to their efficacy in numerous in vitro and in vivo models of oxidative stress. Within a class of Mn porphyrins, lipophilic analogs are particularly effective for treating central nervous system injuries where mitochondria play key role. This article is part of a Special Issue entitled: Antioxidants and Antioxidant Treatment in Disease.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号