首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55篇
  免费   6篇
  61篇
  2018年   3篇
  2016年   3篇
  2015年   3篇
  2014年   4篇
  2013年   2篇
  2012年   2篇
  2011年   2篇
  2009年   5篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2004年   6篇
  2003年   4篇
  2002年   1篇
  2001年   2篇
  1999年   1篇
  1997年   1篇
  1995年   1篇
  1990年   3篇
  1988年   1篇
  1986年   1篇
  1984年   1篇
  1982年   3篇
  1980年   2篇
  1979年   3篇
  1978年   2篇
  1976年   2篇
排序方式: 共有61条查询结果,搜索用时 15 毫秒
1.
PGRP-S (Tag7) is an innate immunity protein involved in the antimicrobial defense systems, both in insects and in mammals. We have previously shown that Tag7 specifically interacts with several proteins, including Hsp70 and the calcium binding protein S100A4 (Mts1), providing a number of novel cellular functions. Here we show that Tag7–Mts1 complex causes chemotactic migration of lymphocytes, with NK cells being a preferred target. Cells of either innate immunity (neutrophils and monocytes) or acquired immunity (CD4+ and CD8+ lymphocytes) can produce this complex, which confirms the close connection between components of the 2 branches of immune response.  相似文献   
2.
34Fusarium graminearum Schw isolates produced 4-deoxynivalenol to form significant amounts of 4, 7 — dideoxynivalenol and lesser amounts of 4 — deoxynivalenol monoacetates on grain substratesin vitro. This is the first report on the capability a large group of naturally occurring isolates to produce 4,7-dideoxynivalenol. The average levels of 4,7-dideoxynivalenol on rice, corn, barley, and wheat as a substrate were respectively 26.8, 14.0, 12.8, and 10.5% of the level of 4-deoxynivalenol. 4, 7 — dideoxynivalenol was present in all examined naturally contaminated wheat kernel samples at levels of 1.7 to 7.9% of the level of 4-deoxynivalenol. These findings suggest that more attention should be given to the occurrence of 4,7-dideoxynivalenol in cereals.  相似文献   
3.
Mitochondria isolated from the Crassulacean acid metabolism plant Sedum praealtum were demonstrated to decarboxylate added malate at basal rates of 30–50 μmol mg?1 original chlorophyll h?1. The basal rate could be stimulated markedly by the addition of ADP, oxaloacetic acid, an uncoupler of oxidative phosphorylation, or NAD, with maximum rates of 70–100 μmol mg?1 original chlorophyll h?1 observed. These observed rates were high enough to account for a large proportion of the estimated rate of malate decarboxylation in vivo. The major products of malate oxidation by the mitochondria in most cases were found to be pyruvate and CO2, indicating that malate oxidation in these mitochondria proceeds mainly through NAD malic enzyme rather than NAD malate dehydrogenase. Under conditions employed little of the pyruvate formed was further oxidized, suggesting a fate other than oxidation (conversion to starch) for this pyruvate. Malate decarboxylation by mitochondria and by partially purified NAD malic enzyme was markedly inhibited by NaHCO3. A possible physiological role is suggested for this inhibition as a feedback control on the enzyme.  相似文献   
4.
The respiration of potato tubers (Solanum tuberosum var. Russet Burbank) which have been kept at room temperature for 10 days is stimulated upon subsequent treatment with C2H4 (10 microliters per liter) and O2. The respiratory rise reaches a peak in 24 to 30 hours and thereafter declines. Coincident with the rise in tuber respiration is an increase in the respiratory rates of fresh slices and isolated mitochondria. Slices and mitochondria from C2H4- and O2-treated tubers also display substantial resistance to CN, and the resistant respiration is inhibited by hydroxamates.

The longer the tubers are stored after harvest, the less effective is C2H4 in causing CN resistance in slices and mitochondria from treated tubers. Addition of 10% CO2 to the C2H4-O2 mixture, however, causes extensive CN resistance to develop, even in slices and mitochondria from old tubers. The results show that C2H4, O2, and CO2 act synergistically to induce alternative path development in potatoes.

  相似文献   
5.
Objectives Somatoform disorders are common in international primary care settings, but have been little studied in the developing world. The objective of this study was to determine the prevalence of severe undifferentiated somatoform disorder, and its relationship to depression and anxiety, among patients attending walk-in clinics in Trinidad.Methods The study participants, who were all aged 18 years or older and attending walk-in clinics at 16 randomly selected health centres, were surveyed between May and August 2007 using the PRIME-MD questionnaire.Results There were 594 participants (the response rate was 92%), of whom 72.7% were female. Their ages ranged from 18 to 93 years, and 54.5% were over 50 years of age. In total, 37.2% were married and 25.9% were single. Indo-Trinidadians represented 43.1% and Afro-Trinidadians represented 36% of the study sample; 56.5% of the participants reported that their income was less than US$ 400 per month, and 65.7% were unemployed. At walk-in clinics in Trinidad, the estimated prevalence of severe undifferentiated somatoform disorder was 10.3% (95% CI: 7.86–12.74), that of hypochondriasis was 28.5% (95% CI: 24.9–32.1), and that of body dysmorphic disorder was 15.8% (95% CI: 11.9–18.7). Severe undifferentiated somatoform disorder was statistically significantly associated with gender and ethnicity but not with age, level of education, employment status or income. Chi-square testing found significant associations between the presence of severe undifferentiated somatoform disorder and both depression and anxiety (P < 0.05), between hypochondriasis and both anxiety and depression (P < 0.05), and between body dysmorphic disorder and depression (P < 0.05) but not anxiety. Regression analysis suggested that the demographic features that predicted severe undifferentiated somatoform disorder were being female or Indo-Trinidadian.Conclusions Walk-in clinics in Trinidad that serve older patients on a lower income have a high proportion of patients with somatoform disorders as measured by the PRIME-MD scale. These patients exhibit many features of anxiety and depression. These findings have implications for medical training and service delivery.  相似文献   
6.
Previous work with model transgenic plants has demonstrated that cellular accumulation of mannitol can alleviate abiotic stress. Here, we show that ectopic expression of the mtlD gene for the biosynthesis of mannitol in wheat improves tolerance to water stress and salinity. Wheat (Triticum aestivum L. cv Bobwhite) was transformed with the mtlD gene of Escherichia coli. Tolerance to water stress and salinity was evaluated using calli and T(2) plants transformed with (+mtlD) or without (-mtlD) mtlD. Calli were exposed to -1.0 MPa of polyethylene glycol 8,000 or 100 mM NaCl. T(2) plants were stressed by withholding water or by adding 150 mM NaCl to the nutrient medium. Fresh weight of -mtlD calli was reduced by 40% in the presence of polyethylene glycol and 37% under NaCl stress. Growth of +mtlD calli was not affected by stress. In -mtlD plants, fresh weight, dry weight, plant height, and flag leaf length were reduced by 70%, 56%, 40%, and 45% compared with 40%, 8%, 18%, and 29%, respectively, in +mtlD plants. Salt stress reduced shoot fresh weight, dry weight, plant height, and flag leaf length by 77%, 73%, 25%, and 36% in -mtlD plants, respectively, compared with 50%, 30%, 12%, and 20% in +mtlD plants. However, the amount of mannitol accumulated in the callus and mature fifth leaf (1.7-3.7 micromol g(-1) fresh weight in the callus and 0.6-2.0 micromol g(-1) fresh weight in the leaf) was too small to protect against stress through osmotic adjustment. We conclude that the improved growth performance of mannitol-accumulating calli and mature leaves was due to other stress-protective functions of mannitol, although this study cannot rule out possible osmotic effects in growing regions of the plant.  相似文献   
7.

Background  

Phylogenetic hypotheses of higher-level relationships in the order Charadriiformes based on morphological data, partly disagree with those based on DNA-DNA hybridisation data. So far, these relationships have not been tested by analysis of DNA sequence data. Herein we utilize 1692 bp of aligned, nuclear DNA sequences obtained from 23 charadriiform species, representing 15 families. We also test earlier suggestions that bustards and sandgrouses may be nested with the charadriiforms. The data is analysed with methods based on the parsimony and maximum-likelihood criteria.  相似文献   
8.

Background

Aluminum (Al) toxicity is an important limitation to food security in tropical and subtropical regions. High Al saturation on acid soils limits root development, reducing water and nutrient uptake. In addition to naturally occurring acid soils, agricultural practices may decrease soil pH, leading to yield losses due to Al toxicity. Elucidating the genetic and molecular mechanisms underlying maize Al tolerance is expected to accelerate the development of Al-tolerant cultivars.

Results

Five genomic regions were significantly associated with Al tolerance, using 54,455 SNP markers in a recombinant inbred line population derived from Cateto Al237. Candidate genes co-localized with Al tolerance QTLs were further investigated. Near-isogenic lines (NILs) developed for ZmMATE2 were as Al-sensitive as the recurrent line, indicating that this candidate gene was not responsible for the Al tolerance QTL on chromosome 5, qALT5. However, ZmNrat1, a maize homolog to OsNrat1, which encodes an Al3+ specific transporter previously implicated in rice Al tolerance, was mapped at ~40 Mbp from qALT5. We demonstrate for the first time that ZmNrat1 is preferentially expressed in maize root tips and is up-regulated by Al, similarly to OsNrat1 in rice, suggesting a role of this gene in maize Al tolerance. The strongest-effect QTL was mapped on chromosome 6 (qALT6), within a 0.5 Mbp region where three copies of the Al tolerance gene, ZmMATE1, were found in tandem configuration. qALT6 was shown to increase Al tolerance in maize; the qALT6-NILs carrying three copies of ZmMATE1 exhibited a two-fold increase in Al tolerance, and higher expression of ZmMATE1 compared to the Al sensitive recurrent parent. Interestingly, a new source of Al tolerance via ZmMATE1 was identified in a Brazilian elite line that showed high expression of ZmMATE1 but carries a single copy of ZmMATE1.

Conclusions

High ZmMATE1 expression, controlled either by three copies of the target gene or by an unknown molecular mechanism, is responsible for Al tolerance mediated by qALT6. As Al tolerant alleles at qALT6 are rare in maize, marker-assisted introgression of this QTL is an important strategy to improve maize adaptation to acid soils worldwide.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-153) contains supplementary material, which is available to authorized users.  相似文献   
9.
The B-subunit component of Escherichia coli heat-labile enterotoxin (EtxB), which binds to cell surface GM1 ganglioside receptors, was recently shown to be a highly effective vehicle for delivery of conjugated peptides into the major histocompatibility complex (MHC) class I pathway. In this study we have investigated the pathway of epitope delivery. The peptides used contained the epitope either located at the C terminus or with a C-terminal extension. Pretreatment of cells with cholesterol-disrupting agents blocked transport of EtxB conjugates to the Golgi/endoplasmic reticulum, but did not affect EtxB-mediated MHC class I presentation. Under these conditions, EtxB conjugates entered EEA1-positive early endosomes where peptides were cleaved and translocated into the cytosol. Endosome acidification was required for epitope presentation. Purified 20 S immunoproteasomes were able to generate the epitope from peptides in vitro, but 26 S proteasomes were not. Only presentation from the C-terminal extended peptide was proteasome-dependent in cells, and this was found to be significantly slower than presentation from peptides with the epitope at the C terminus. These results implicate the proteasome in the generation of the correct C terminus of the epitope and are consistent with proteasome-independent N-terminal trimming. Epitope presentation was blocked in a TAP-deficient cell line, providing further evidence that conjugated peptides enter the cytosol as well as demonstrating a requirement for the peptide transporter. Our findings demonstrate the utility of EtxB-mediated peptide delivery for rapid and efficient loading of MHC class I epitopes in several different cell types. Conjugated peptides are released from early endosomes into the cytosol where they gain access to proteasomes and TAP in the "classical" pathway of class I presentation.  相似文献   
10.
Polyphenol oxidase (PPO) enzymatic activity is a major cause in time-dependent discoloration in wheat dough products. The PPO-A1 and PPO-D1 genes have been shown to contribute to wheat kernel PPO activity. Recently a novel PPO gene family consisting of the PPO-A2, PPO-B2, and PPO-D2 genes has been identified and shown to be expressed in wheat kernels. In this study, the sequences of these five kernel PPO genes were determined for the spring wheat cultivars Louise and Penawawa. The two cultivars were found to be polymorphic at each of the PPO loci. Three novel alleles were isolated from Louise. The Louise X Penawawa mapping population was used to genetically map all five PPO genes. All map to the long arm of homeologous group 2 chromosomes. PPO-A2 was found to be located 8.9 cM proximal to PPO-A1 on the long arm of chromosome 2A. Similarly, PPO-D1 and PPO-D2 were separated by 10.7 cM on the long arm of chromosome 2D. PPO-B2 mapped to the long arm of chromosome 2B and was the site of a novel QTL for polyphenol oxidase activity. Five other PPO QTL were identified in this study. One QTL corresponds to the previously described PPO-D1 locus, one QTL corresponds to the PPO-D2 locus, whereas the remaining three are located on chromosome 2B.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号