首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   93篇
  免费   12篇
  2022年   1篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2016年   6篇
  2015年   5篇
  2014年   7篇
  2013年   6篇
  2012年   8篇
  2011年   6篇
  2010年   3篇
  2009年   6篇
  2008年   7篇
  2007年   3篇
  2006年   8篇
  2005年   3篇
  2004年   3篇
  2003年   1篇
  2002年   1篇
  2001年   4篇
  2000年   2篇
  1998年   1篇
  1995年   1篇
  1994年   2篇
  1992年   3篇
  1991年   1篇
  1990年   5篇
  1989年   2篇
  1988年   1篇
  1984年   1篇
  1983年   1篇
排序方式: 共有105条查询结果,搜索用时 15 毫秒
1.
The morphological and biochemical characteristics of pigment accumulations found in the kidney, liver, spleen, and mesentery of three different species of teleost fishes have been studied. There are significant differences in number, distribution, and morphology of pigment accumulations in different organs of the three species. Biochemical studies have shown the existence of tyrosinase activity in the mesentery of Mugil cephalus and in the kidney and mesentery of Sparus auratus. No tyrosinase activity was found in any internal organs of Dicertranchus labrax. That activity was assayed using three methods: tyrosine hidroxylation, dopa oxidation, and melanin formation. The morphological and biochemical observations are in agreement. In those organs in which we have demonstrated melanin synthetic activity, the pigment cells are morphologically and like melanophores, while in the organs that show no melanin synthetic activity, the pigment cells resemble macrophages.  相似文献   
2.
A new spectrophotometric assay for dopachrome tautomerase   总被引:2,自引:0,他引:2  
The existence of a new enzyme involved in mammalian melanogenesis has been recently reported. The names dopachrome oxidoreductase and dopachrome tautomerase have been proposed for the enzyme. So far, this enzyme has been assayed at 475 nm on the basis of its ability to catalyze dopachrome decoloration. This method presents two major problems, derived from the instability of the substrate (dopachrome): (1) dopachrome must be prepared immediately before use, and (2) the rate of dopachrome decoloration in the absence of the enzyme is not negligible, and, furthermore, is enhanced by non-enzymatic agents. In order to overcome these problems, we present a new procedure that combines: (1) a quantitative, fast and easy way to prepare dopachrome from L-dopa by sodium periodate oxidation; (2) a spectrophotometric method in the UV region, at 308 nm, based on following the absorbance increase due to the enzyme-specific tautomerization of dopachrome to 5,6-dihydroxyindole-2-carboxylic acid as opposed to the absorbance decrease due to the spontaneous decarboxylative transformation of dopachrome into 5,6-dihydroxyindole. The advantages of these methods as compared to the previously used procedures are discussed.  相似文献   
3.
The regulation of the final steps of the melanogenesis pathway, after L-2-carboxy-2,3-dihydroindole-5,6-quinone (dopachrome) formation, is studied. It is shown that both tyrosinase and dopachrome tautomerase are involved in the process. In vivo, it seems that tyrosinase is involved in the regulation of the amount of melanin formed, whereas dopachrome tautomerase is mainly involved in the size, structure and composition of melanin, by regulating to the incorporation of 5,6-dihydroxyindole-2-carboxylic acid (DHICA) into the polymer. Moreover, using L-3,4-dihydroxyphenylalanine (dopa) and related compounds, it was shown that the presence of dopachrome tautomerase mediates an initial acceleration of melanogenesis since L-dopachrome is rapidly transformed to DHICA, but that melanin formation is inhibited because of the stability of this carboxylated indole compared to 5,6-dihydroxyindole (DHI), its decarboxylated counterpart obtained by spontaneous decarboxylation of L-dopachrome. Using L-dopa methyl ester as a precursor of melanogenesis, it is shown that this carboxylated indole does not polymerize in the absence of DHI, even in the presence of tyrosinase. However, it is incorporated into the polymer in the presence of both tyrosinase and DHI. Thus, this study suggests that DHI is essential for melanin formation, and the rate of polymerization depends on the ratio between DHICA and DHI in the medium. In the melanosome, this ratio should be regulated by the ratio between the activities of dopachrome tautomerase and tyrosinase.  相似文献   
4.
Regulation of mammalian melanogenesis. II: The role of metal cations   总被引:2,自引:0,他引:2  
Melanogenesis can be divided into two phases. The first one involves two tyrosinase-catalyzed oxidations from tyrosine to dopaquinone and a very fast chemical step leading to dopachrome. The second phase, from dopachrome to melanin, can proceed spontaneously through several incompletely known reactions. However, some metal transition ions and protein factors different from tyrosinase might regulate the reaction rate and determine the structure and relative concentrations of the intermediates. The study of the effects of some divalent metal ions (Zn, Cu, Ni and Co) on some steps of the melanogenesis pathway has been approached using different radiolabeled substrates. Zn(II) inhibited tyrosine hydroxylation whereas Ni(II) and Co(II) were activators. Ni(II), Cu(II) and Co(II) accelerated chemical reactions from dopachrome but inhibited its decarboxylation. Dopachrome tautomerase also decreased decarboxylation. When metal ions and this enzyme act together, the inhibition of decarboxylation was greater than that produced by each agent separately, but amount of carboxylated units incorporated to the melanin was not higher than the amount incorporated in the presence of only cations. The amount of total melanin formed from tyrosine was increased by the presence of both agents. The action of Zn(II) was different from other ions also in the second phase of melanogenesis, and its effect on decarboxylation was less pronounced. Since tyrosine hydroxylation is the rate-limiting step in melanogenesis, Zn(II) inhibited the pathway. This ion seems to be the most abundant cation in mammalian melanocytes. Therefore, under physiological conditions, the regulatory role of metal ions and dopachrome tautomerase does not seem to be mutually exclusive, but rather complementary.  相似文献   
5.
Arbuscular mycorrhizal (AM) symbiosis can alleviate salt stress in plants. However the intimate mechanisms involved, as well as the effect of salinity on the production of signalling molecules associated to the host plant-AM fungus interaction remains largely unknown. In the present work, we have investigated the effects of salinity on lettuce plant performance and production of strigolactones, and assessed its influence on mycorrhizal root colonization. Three different salt concentrations were applied to mycorrhizal and non-mycorrhizal plants, and their effects, over time, analyzed. Plant biomass, stomatal conductance, efficiency of photosystem II, as well as ABA content and strigolactone production were assessed. The expression of ABA biosynthesis genes was also analyzed.  相似文献   
6.
The adaptation capacity of olive trees to different environments is well recognized. However, the presence of microorganisms in the soil is also a key factor in the response of these trees to drought. The objective of the present study was to elucidate the effects of different arbuscular mycorrhizal (AM) fungi coming from diverse soils on olive plant growth and water relations. Olive plants were inoculated with native AM fungal populations from two contrasting environments, that is, semi‐arid – Freila (FL) and humid – Grazalema (GZ) regions, and subjected to drought stress. Results showed that plants grew better on GZ soil inoculated with GZ fungi, indicating a preference of AM fungi for their corresponding soil. Furthermore, under these conditions, the highest AM fungal diversity was found. However, the highest root hydraulic conductivity (Lpr) value was achieved by plants inoculated with GZ fungi and growing in FL soil under drought conditions. So, this AM inoculum also functioned in soils from different origins. Nine novel aquaporin genes were also cloned from olive roots. Diverse correlation and association values were found among different aquaporin expressions and abundances and Lpr, indicating how the interaction of different aquaporins may render diverse Lpr values.  相似文献   
7.
Tyrosine kinase receptors play a key role in the communication of cells with their environment. Growth hormone receptors, such as insulin receptors, are involved in the regulation of cell growth, differentiation and metabolism in multicellular organisms. Insulin-related peptides and members of the insulin receptor subfamily have been described in a wide variety of invertebrates, including freshwater molluscs. In this paper, we describe the metabolic effect of insulin on a mollusc cell line (Bge) derived from embryos of the snail Biomphalaria glabrata. Using a PCR strategy, we have cloned from Bge cells a cDNA encoding a protein (BgIR) homologous to, and exhibiting all of the typical features of insulin receptors. Northern blot analysis confirmed the expression of BgIR in B. glabrata snails and suggested its wide distribution in the snail body. Bge cells have been shown to provide the environmental conditions necessary for the in vitro development of the sporocysts of Schistosoma mansoni, a trematode parasite that uses B. glabrata as an intermediate host. The possible implication of BgIR in the activating and proliferating processes observed in Bge cells during their coculture with S. mansoni larvae is discussed.  相似文献   
8.
A novel method for the quantitative determination of gibberellic acid in fermentation broths has been developed. It is based on the kinetic of the reaction of conversion of gibberellic acid to gibberellenic acid. The method is simple, reliable, faster than most of methods known, and free of the interferences which commonly affect spectrophotometric methods currently in use. Its threshold sensitivity is 0.1 g and its accuracy is greater than 97% for concentrations of gibberellic acid ranging from 0.1 to 1 g l(-1).  相似文献   
9.
In the present research we studied the photosynthetic traits and protective mechanisms against oxidative stress in two maize ( Zea mays L.) genotypes differing in chilling sensitivity (Z7, tolerant and Penjalinan, sensitive) subjected to 5°C for 5 days, with or without pretreatment by drought. The drought pretreatment decreased the symptoms of chilling injury in Penjalinan plants estimated as necrotic leaf area and maximum quantum yield of photosystem II. Furthermore, drought pretreatment diminished the level of lipid peroxidation caused by chilling in Penjalinan plants. After one day of recovery from chilling the Z7 and drought-pretreated Penjalinan plants showed higher net photosynthesis rates than the non-drought-pretreated Penjalinan plants, thereby decreasing the probability of generating reactive oxygen species. The greater net photosynthesis was correlated with the greater NADP-malate dehydrogenase activity. No differences in either the de-epoxidation state of the xanthophyll cycle or the antioxidant enzyme activities were found among the chilled groups of plants. However, a drastic decrease in ascorbate content was observed in chilled Penjalinan plants without drought pretreatment. As we found an increase of H2O2 content after drought pretreatment, we suggest its involvement as a signal in the drought-enhanced chilling tolerance of maize.  相似文献   
10.
Signaling in the plant cytosol: cysteine or sulfide?   总被引:1,自引:0,他引:1  
Cysteine (Cys) is the first organic compound containing reduced sulfur that is synthesized in the last stage of plant photosynthetic assimilation of sulfate. It is a very important metabolite not only because it is crucial for the structure, function and regulation of proteins but also because it is the precursor molecule of an enormous number of sulfur-containing metabolites essential for plant health and development. The biosynthesis of Cys is accomplished by the sequential reaction of serine acetyltransferase (SAT) and O-acetylserine(thiol)synthase (OASTL). In Arabidopsis thaliana, the analysis of specific mutants of members of the SAT and OASTL families has demonstrated that the cytosol is the compartment where the bulk of Cys synthesis takes place and that the cytosolic OASTL enzyme OAS-A1 is the responsible enzyme. Another member of the OASTL family is DES1, a novel l-cysteine desulfhydrase that catalyzes the desulfuration of Cys to produce sulfide, thus acting in a manner opposite to that of OAS-A1. Detailed studies of the oas-a1 and des1 null mutants have revealed the involvement of the DES1 and OAS-A1 proteins in coordinate regulation of Cys homeostasis and the generation of sulfide in the cytosol for signaling purposes. Thus, the levels of Cys in the cytosol strongly affect plant responses to both abiotic and biotic stress conditions, while sulfide specifically generated from the degradation of Cys negatively regulates autophagy induced in different situations. In conclusion, modulation of the levels of Cys and sulfide is likely critical for plant performance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号