首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   325篇
  免费   29篇
  354篇
  2022年   4篇
  2021年   5篇
  2020年   3篇
  2019年   5篇
  2018年   4篇
  2017年   5篇
  2016年   8篇
  2015年   13篇
  2014年   19篇
  2013年   12篇
  2012年   30篇
  2011年   24篇
  2010年   12篇
  2009年   8篇
  2008年   21篇
  2007年   15篇
  2006年   15篇
  2005年   16篇
  2004年   9篇
  2003年   12篇
  2002年   10篇
  2001年   14篇
  2000年   5篇
  1999年   8篇
  1998年   10篇
  1997年   4篇
  1996年   5篇
  1995年   7篇
  1994年   7篇
  1993年   4篇
  1992年   4篇
  1991年   3篇
  1990年   4篇
  1989年   2篇
  1988年   3篇
  1987年   2篇
  1986年   3篇
  1984年   1篇
  1982年   2篇
  1981年   1篇
  1975年   1篇
  1974年   2篇
  1973年   2篇
  1972年   1篇
  1971年   2篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
  1967年   2篇
  1966年   1篇
排序方式: 共有354条查询结果,搜索用时 0 毫秒
1.
Attached leaves of pumpkin ( Cucurbita pepo L. cv. Jattiläismeloni) were exposed to high light intensity at room temperature (ca 23°C) and at 1°C. Fluorescence parameters and electron transport activities measured from isolated thylakoids indicated faster photoinhibition of PSII at low temperature. Separation of the α and β components of the complementary area above the fluorescence induction curve of dichlorophenyl-dimethylurea-poisoned thylakoids revealed that at low temperature only the α-centers declined during exposure to high light intensity while the content of functional β-centers remained constant. Freeze-fracture electron microscopy showed no decrease in the density of particles on the appressed exoplasmic fracture face, indicating that the photoinhibited α-centers remained in the appressed membranes at 1°C. Because of the function of the repair and protective mechanisms of PSII, strong light induced less photoinhibition at room temperature, but more complicated changes occurred in the α/β-heterogeneity of PSII. During the first 30 min at high light intensity the decrease in α-centers was almost as large as at 1°C, but in contrast to the situation at low temperature the decrease in α-centers was compensated for by a significant increase in PSIIβ-centers. Changes in the density and size of freeze-fracture particles suggest that this increase in β-centers was due to migration of phosphorylated light-harvesting complex from appressed to non-appressed thylakoid membranes while the PSII core remained in the appressed membranes. This situation, however, was only transient and was followed by a rapid decrease in the functionalβ-centers.  相似文献   
2.
We propose yet another function for the unique appressed thylakoids of grana stacks of higher plants, namely that during prolonged high light, the non-functional, photoinhibited PS II centres accumulate as D1 protein degradation is prevented and may act as dissipative conduits to protect other functional PS II centres. The need for this photoprotective mechanism to prevent high D1 protein turnover under excess photons in higher plants, especially those grown in shade, is due to conflicting demands between efficient use of low irradiance and protection from periodic exposure to excessive irradiance.  相似文献   
3.
The unicellular cyanobacterium Synechococcus sp. PCC 7942 has three psbA genes encoding two different forms of the photosystem II reaction centre protein D1 (D1:1 and D1:2). The level of expression of these psbA genes and the synthesis of D1:1 and D1:2 are strongly regulated under varying light conditions. In order to better understand the regulatory mechanisms underlying these processes, we have constructed a strain of Synechococcus sp. PCC 7942 capable of over-producing psbA mRNA and D1 protein. In this study, we describe the over-expression of D1:1 using a tac-hybrid promoter in front of the psbAI gene in combination with lacI Q repressor system. Over-production of D1:1 was induced by growing cells for 12 h at 50 mol photons m-2 s-1 in the presence of 40 or 80 g/ml IPTG. The amount of psbAI mRNA and that of D1:1 protein in cells grown with IPTG was three times and two times higher, respectively. A higher concentration of IPTG (i.e., 150 g/ml) did not further increase the production of the psbAI message or D1:1. The over-production of D1:1 caused a decrease in the level of D1:2 synthesised, resulting in most PSII reaction centres containing D1:1. However, the over-production of D1:1 had no effect on the pigment composition (chlorophyll a or phycocyanin/number of cells) or the light-saturated rate of photosynthesis. This and the fact that the total amounts of D1 and D2 proteins were not affected by IPTG suggest that the number of PSII centres within the membranes remained unchanged. From these results, we conclude that expression of psbAI can be regulated by using the tac promoter and lacI Q system. However, the accumulation of D1:1 protein into the membrane is regulated by the number of PSII centres.  相似文献   
4.
Illumination of isolated spinach thylakoid membranes under anaerobic conditions gave rise to severe inhibition of photosystem II electron transport but did not result in D1-protein degradation. When these photoinhibited thylakoids were incubated in total darkness the photosystem II activity could be fully restored in vitro in a process that required 1-2 h for completion.  相似文献   
5.
Pristine peatlands have generally low nitrous oxide (N2O) emissions but drainage and management practices enhance the microbial processes and associated N2O emissions. It is assumed that leaving peat soils from intensive management, such as agriculture, will decrease their N2O emissions. In this paper we report how the annual N2O emission rates will change when agricultural peat soil is either left abandoned or afforested and also N2O emissions from afforested peat extraction sites. In addition, we evaluated a biogeochemical model (DNDC) with a view to explaining GHG emissions from peat soils under different land uses. The abandoned agricultural peat soils had lower mean annual N2O emissions (5.5?±?5.4?kg?N?ha?1) than the peat soils in active agricultural use in Finland. Surprisingly, N2O emissions from afforested organic agricultural soils (12.8?±?9.4?kg?N?ha?1) were similar to those from organic agricultural soils in active use. These emissions were much higher than those from the forests on nutrient rich peat soils. Abandoned and afforested peat extraction sites emitted more N2O, (2.4?±?2.1?kg?N?ha?1), than the areas under active peat extraction (0.7?±?0.5?kg?N?ha?1). Emissions outside the growing season contributed significantly, 40% on an average, to the annual emissions. The DNDC model overestimated N2O emission rates during the growing season and indicated no emissions during winter. The differences in the N2O emission rates were not associated with the age of the land use change, vegetation characteristics, peat depth or peat bulk density. The highest N2O emissions occurred when the soil C:N ratio was below 20 with a significant variability within the measured C:N range (13–27). Low soil pH, high nitrate availability and water table depth (50–70?cm) were also associated with high N2O emissions. Mineral soil has been added to most of the soils studied here to improve the fertility and this may have an impact on the N2O emissions. We infer from the multi-site dataset presented in this paper that afforestation is not necessarily an efficient way to reduce N2O emissions from drained boreal organic fields.  相似文献   
6.
Chlorophyll fluorescence induction curves of toxic and non-toxic strains of the cyanobacterium Nodularia were measured and compared with fluorescence curves measured from four species of eukaryotic algae. Both cyanobacteria and algae were isolated from the Baltic Sea. The results show that Nodularia strains can be distinguished from the eukaryotes by applying a pattern recognition procedure to the fluorescence induction curves, suggesting that the fluorescence fingerprinting technique might be useful in environmental monitoring of marine algae. The six studied Nodularia strains could not be distinguished from each other from their fluorescence induction kinetics. However, their fluorescence curves fell into two clear categories, the toxic and the non-toxic Nodularia. Emission spectroscopy and differences in the fluorescence induction curves showed that the ratio of the intensity of the Photosystem I emission peak to the Photosystem II peak is higher in non-toxic Nodularia than in the toxic strains, suggesting that the toxicity affects the structure of the photosynthesis machinery. The effect on photosynthesis may be related to the ability of the microcystins to chelate iron.  相似文献   
7.

Background  

The aim of this study was to evaluate long-term platinum retention in patients treated with cisplatin and oxaliplatin.  相似文献   
8.
9.
10.
The effects of chilling in the light (4 days at 5°C and 100-200 micromoles of photons per square meter per second) on the distribution of chlorophyll (Chl) protein complexes between appressed and nonappressed thylakoid regions of pumpkin (Cucurbita pepo L.) chloroplasts were studied and compared with the changes occurring during in vitro heat treatment (5 minutes at 40°C) of isolated thylakoids. Both treatments induced an increase (18 and 65%, respectively) in the relative amount of the antenna Chl a protein complexes (CP47 + CP43) of photosystem II (PSII) in stroma lamellae vesicles. Freeze-fracture replicas of light-chilled material revealed an increase in the particle density on the exoplasmic fracture face of unstacked membrane regions. These two treatments differed markedly, however, in respect to comigration of the light-harvesting Chl a/b protein complex (LHCII) of PSII. The LHCII/PSII ratio in stroma lamellae vesicles remained fairly constant during chilling in the light, whereas it dropped during the heat treatment. Moreover, it was a minor light-harvesting Chl a/b protein complex of PSII, CP29, that increased most in stroma lamellae vesicles during light-chilling. Changes in the organization of LHCII during chilling were suggested by a shift to particles of smaller sizes on the protoplasmic fracture face of stacked membrane regions and a decrease in the amount of trans3-hexadecenoic acid in the phosphatidyldiacylglycerol fraction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号