首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76篇
  免费   5篇
  国内免费   5篇
  2024年   1篇
  2023年   3篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   5篇
  2018年   3篇
  2017年   4篇
  2016年   7篇
  2015年   6篇
  2014年   9篇
  2013年   11篇
  2012年   6篇
  2011年   4篇
  2010年   1篇
  2009年   1篇
  2008年   6篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   3篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1975年   1篇
排序方式: 共有86条查询结果,搜索用时 15 毫秒
1.
Atrial fibrosis is an important factor in the initiation and maintenance of atrial fibrillation (AF); therefore, understanding the pathogenesis of atrial fibrosis may reveal promising therapeutic targets for AF. In this study, we successfully established a rapid atrial pacing canine model and found that the inducibility and duration of AF were significantly reduced by the overexpression of c‐Ski, suggesting that this approach may have therapeutic effects. c‐Ski was found to be down‐regulated in the atrial tissues of the rapid atrial pacing canine model. We artificially up‐regulated c‐Ski expression with a c‐Ski–overexpressing adenovirus. Haematoxylin and eosin, Masson's trichrome and picrosirius red staining showed that c‐Ski overexpression alleviated atrial fibrosis. Furthermore, we found that the expression levels of collagen III and α‐SMA were higher in the groups of dogs subjected to right‐atrial pacing, and this increase was attenuated by c‐Ski overexpression. In addition, c‐Ski overexpression decreased the phosphorylation of smad2, smad3 and p38 MAPK (p38α and p38β) as well as the expression of TGF‐β1 in atrial tissues, as shown by a comparison of the right‐atrial pacing + c‐Ski‐overexpression group to the control group with right‐atrial pacing only. These results suggest that c‐Ski overexpression improves atrial remodelling in a rapid atrial pacing canine model by suppressing TGF‐β1–Smad signalling and p38 MAPK activation.  相似文献   
2.
Despite the improvement in acute myeloid leukemia (AML) treatments, most patients had a poor prognosis and suffered from chemoresistance and disease relapse. Therefore, there is an urgent need for elucidation of mechanism(s) underlying drug resistance in AML. In the present study, we found that AML cells showed less susceptibility to adriamycin (ADR) in the presence of hypoxia, while inhibition of hypoxia‐inducible factor 1α (HIF‐1α) by CdCl2 can make AML cells re‐susceptibile to ADR even under hypoxia. Moreover, HIF‐1α is overexpressed and plays an important role in ADR‐resistance maintenance in resistant AML cells. We further found hypoxia or induction of HIF‐1α can significantly upregulate yes‐associated protein (YAP) expression in AML cells, and resistant cells express a high level of YAP. Finally, we found that YAP may not only enhance HIF‐1α stability but also promote HIF‐1α's activity on the target gene pyruvate kinase M2. In conclusion, our data indicate that HIF‐1α or YAP may represent a therapeutic target for overcoming resistance toward adriamycin‐based chemotherapy in AML.  相似文献   
3.
Resistance to Phytophthora sojae isolate PsMC1 was evaluated in 102 F2∶3 families derived from a cross between the resistant soybean cultivar Wandou 15 and the susceptible cultivar Williams and genotyped using simple sequence repeat (SSR) markers. The segregation ratio of resistant, segregating, and susceptible phenotypes in the population suggested that the resistance in Wandou 15 was dominant and monogenic. Twenty-six polymorphic SSR markers were identified on soybean chromosome 17 (Molecular linkage group D2; MLG D2), which were linked to the resistance gene based on bulked segregation analysis (BSA). Markers Sattwd15-24/25 and Sattwd15-47 flanked the resistance gene at a distance of 0.5 cM and 0.8 cM, respectively. Two cosegregating markers, Sattwd15-28 and Sattwd15-32, were also screened in this region. This is the first Rps resistance gene mapped on chromosome 17, which is designated as Rps10. Eight putative genes were found in the mapped region between markers Sattwd15-24/25 and Sattwd15-47. Among them, two candidate genes encoding serine/threonine (Ser/Thr) protein kinases in Wandou 15 and Williams were identified and sequenced. And the differences in genomic sequence and the putative amino acid sequence, respectively, were identified within each candidate gene between Wandou 15 and Williams. This novel gene Rps10 and the linked markers should be useful in developing soybean cultivars with durable resistance to P. sojae.  相似文献   
4.
Phomopsis seed decay (PSD), primarily caused by Phomopsis longicolla, is a major contributor to poor soybean seed quality and significant yield loss, particularly in early maturing soybean genotypes. However, it is not yet known whether PSD resistance is associated with early maturity. This study was conducted to identify quantitative trait loci (QTLs) for resistance to PSD and days to maturity using a recombinant inbred line (RIL) population derived from a cross between the PSD-resistant Taekwangkong and the PSD-susceptible SS2-2. Based on a genetic linkage map incorporating 117 simple sequence repeat markers, QTL analysis revealed two and three QTLs conferring PSD resistance and days to maturity, respectively, in the RIL population. Two QTLs (PSD-6-1 and PSD-10-2) for PSD resistance were identified in the intervals of Satt100–Satt460 and Sat_038–Satt243 on chromosomes 6 and 10, respectively. Two QTLs explained phenotypic variances in PSD resistance of 46.3 and 14.1 %, respectively. At the PSD-6-1 QTL, the PSD-resistant cultivar Taekwangkong contributed the allele with negative effect decreasing the infection rate of PSD and this QTL does not overlap with any previously reported loci for PSD resistance in other soybean genotypes. Among the three QTLs for days to maturity, two (Mat-6-2 and Mat-10-3) were located at positions similar to the PSD-resistance QTLs. The identification of the QTLs linked to both PSD resistance and days to maturity indicates a biological correlation between these two traits. The newly identified QTL for resistance to PSD associated with days to maturity in Taekwangkong will help improve soybean resistance to P. longicolla.  相似文献   
5.
Human umbilical vein endothelial cells (HUVECS) are used as an irreplaceable tool for the study of vascular diseases. However, the technicians who isolate HUVECs are largely exposed to potential infectious threats. Here we report the development of a specialized instrument to protect researchers from known or unknown infectious agents when they operate on human umbilical cords. This instrument can be assembled by common laboratory supplies and adapted to accommodate umbilical cords of different lengths. When the cord is enclosed within the instrument, the risk of sample contamination and operator infection is greatly reduced. Using our instrument, endothelial cells were successfully isolated from human umbilical veins without contamination. The cells were verified by their cobblestone-like morphology and by immunofluorescence staining (Factor VIII and CD31 positivity and α-SMA negativity). Our instrument simplifies and optimizes the cell extraction process, and most importantly elevates the biosafety to a higher level during the isolation of human umbilical vein endothelial cells.  相似文献   
6.
7.
Blood flow can modulate vascular cell functions. We studied interactions between integrins and Flk-1 in transducing the mechanical shear stress due to flow. This application of a step shear stress caused Flk-1. Casitas B-lineage lymphoma (Cbl) activation (Flk-1. Cbl association, tyrosine phosphorylation of the Cbl-bound Flk-1, and tyrosine phosphorylation of Cbl) in bovine aortic endothelial cells (BAECs). The activation of integrins by plating BAECs on vitronectin or fibronectin also induced this Flk-1. Cbl activation. The shear-induced Flk-1. Cbl activation was blocked by inhibitory antibodies for alphavbeta3- or beta1-integrin, suggesting that it is mediated by integrins. Inhibition of Flk-1 by SU1498 also abolished this shear-induced Flk-1. Cbl activation. In contrast to the requirement of integrins for Flk-1. Cbl activation, the Flk-1 blocker SU1498 had no detectable effect on the shear-induced integrin activation, suggesting that integrins and Flk-1 play sequential roles in the signal transduction hierarchy induced by shear stress. Integrins are essential for the mechanical activation of Flk-1 by shear stress but not for the chemical activation of Flk-1 by VEGF.  相似文献   
8.
FQR1 is a novel primary auxin-response gene that codes for a flavin mononucleotide-binding flavodoxin-like quinone reductase. Accumulation of FQR1 mRNA begins within 10 min of indole-3-acetic acid application and reaches a maximum of approximately 10-fold induction 30 min after treatment. This increase in FQR1 mRNA abundance is not diminished by the protein synthesis inhibitor cycloheximide, demonstrating that FQR1 is a primary auxin-response gene. Sequence analysis reveals that FQR1 belongs to a family of flavin mononucleotide-binding quinone reductases. Partially purified His-tagged FQR1 isolated from Escherichia coli catalyzes the transfer of electrons from NADH and NADPH to several substrates and exhibits in vitro quinone reductase activity. Overexpression of FQR1 in plants leads to increased levels of FQR1 protein and quinone reductase activity, indicating that FQR1 functions as a quinone reductase in vivo. In mammalian systems, glutathione S-transferases and quinone reductases are classified as phase II detoxification enzymes. We hypothesize that the auxin-inducible glutathione S-transferases and quinone reductases found in plants also act as detoxification enzymes, possibly to protect against auxin-induced oxidative stress.  相似文献   
9.
10.
Recent genome-wide association studies have identified single-nucleotide polymorphism (SNPs) within the SLC22A3 (solute carrier family 22 member 3) gene associated with coronary heart disease (CHD) in the Caucasian population. We performed molecular analysis to investigate the potential role of SLC22A3 variants in CHD. Our study showed that the common polymorphism rs3088442 G→A, which is localized in the 3′ UTR of the SLC22A3 gene, was associated with a decreased risk of CHD in the Chinese population by a case control study. In silico analysis indicated that G→A substitution of SNP rs3088442 created a putative binding site for miR-147 in the SLC22A3 mRNA. By overexpressing miR-147 or inhibiting endogenous miR-147, we demonstrated that SNP rs3088442 G→A recruited miR-147 to inhibit SLC22A3 expression. Moreover, SLC22A3 deficiency significantly decreased LPS-induced monocytic inflammatory response by interrupting NF-κB and MAPK signaling cascades in a histamine-dependent manner. Notably, the expression of SLC22A3A was also suppressed by LPS stimulus. Our findings might indicate a negative feedback mechanism against inflammatory response by which SLC22A3 polymorphisms decreased the risk of CHD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号