首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   3篇
  2021年   1篇
  2019年   2篇
  2017年   1篇
  2015年   2篇
  2014年   1篇
  2013年   1篇
  2011年   3篇
  2010年   2篇
  2008年   1篇
  2007年   4篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2002年   3篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   3篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1972年   1篇
  1971年   1篇
  1964年   1篇
  1962年   1篇
排序方式: 共有44条查询结果,搜索用时 218 毫秒
1.
Summary Using cultured trophoblast cells obtained by chorionic villus biopsy, we diagnosed Fanconi anemia (FA) in two pregnancies and excluded it in eight pregnancies at risk for the syndrome. Baseline chromosomal breakage and breakage induced by diepoxybutane (DEB) were analyzed. Increased breakage was used as a marker for the syndrome. Our results were unambiguous and provide a reliable method for prenatal detection of FA in the first trimester of pregnancy.  相似文献   
2.
A compartmental model of toad bladder sodium content has been developed, whereby it is possible to measure the four unidirectional fluxes across the opposite faces of the transport compartment, as well as the amount of sodium in the compartment. 24Na is added to the mucosal medium of a short-circuited bladder mounted between halves of a chamber in which the fluid is stirred by rotating impellers. After a steady state is reached, nonradioactive medium is flushed through both sides of the chamber, collected, and counted. The data from each chamber are fitted to sums of exponentials and interpreted in terms of conventional compartmental analysis. Three exponentials are required, with half-times of 0.2, 2.2, and 14.0 min. It is shown that the first of these represents chamber washout, the second the transport pool, and the third a tissue compartment which is not involved in active sodium transport and which does not communicate with the transport pool. The second compartment contains 10.5 µEq of sodium per 100 mg dry weight, an amount equal to approximately 30% of total tissue sodium. The results also indicate, as expected from electrophysiological data, that the mucosal-facing side of the transport compartment is over 10 times as permeable to sodium as the serosal, or pump, side.  相似文献   
3.
4.
5.
FANCD2 is an evolutionarily conserved Fanconi anemia (FA) gene that plays a key role in DNA double-strand-type damage responses. Using complementation assays and immunoblotting, a consortium of American and European groups assigned 29 patients with FA from 23 families and 4 additional unrelated patients to complementation group FA-D2. This amounts to 3%-6% of FA-affected patients registered in various data sets. Malformations are frequent in FA-D2 patients, and hematological manifestations appear earlier and progress more rapidly when compared with all other patients combined (FA-non-D2) in the International Fanconi Anemia Registry. FANCD2 is flanked by two pseudogenes. Mutation analysis revealed the expected total of 66 mutated alleles, 34 of which result in aberrant splicing patterns. Many mutations are recurrent and have ethnic associations and shared allelic haplotypes. There were no biallelic null mutations; residual FANCD2 protein of both isotypes was observed in all available patient cell lines. These analyses suggest that, unlike the knockout mouse model, total absence of FANCD2 does not exist in FA-D2 patients, because of constraints on viable combinations of FANCD2 mutations. Although hypomorphic mutations arie involved, clinically, these patients have a relatively severe form of FA.  相似文献   
6.
7.
FANCJ/BRIP1 encodes a helicase that has been implicated in the maintenance of genomic stability. Here, to better understand FANCJ function in DNA damage responses, we have examined the regulation of its cellular localization. FANCJ nuclear foci assemble spontaneously during S phase and are induced by various stresses. FANCJ foci colocalize with the replication fork following treatment with hydroxyurea, but not spontaneously. Using FANCJ mutants, we find that FANCJ helicase activity and the capacity to bind BRCA1 are both involved in FANCJ recruitment. Given similarities to the recruitment of another Fanconi anemia protein, FANCD2, we tested for colocalization of FANCJ and FANCD2. Importantly, these proteins show substantial colocalization, and FANCJ promotes the assembly of FANCD2 nuclear foci. This process is linked to the proper localization of FANCJ itself since both FANCJ and FANCD2 nuclear foci are compromised by FANCJ mutants that abrogate its helicase activity or interaction with BRCA1. Our results suggest that FANCJ is recruited in response to replication stress and that FANCJ/BRIP1 may serve to link FANCD2 to BRCA1.  相似文献   
8.
As the field of genomics matures, more complex genotypes and phenotypes are being studied. Fanconi anemia (FA), for example, is an inherited chromosome instability syndrome with a complex array of variable disease phenotypes including congenital malformations, hematological manifestations, and cancer. To better understand specific aspects of the genetic etiology of FA and other rare diseases with complex phenotypes, it is often necessary to reduce the dimensions of the disease phenotype information. Towards this end, we extend a novel non-parametric approach to include information about a hierarchical structure among disease phenotypes. The proposed extension increases information content of the phenotype scores obtained and, thereby, the power of genotype-phenotype relationships studies.  相似文献   
9.

Background

Retention of a subset of introns in spliced polyadenylated mRNA is emerging as a frequent, unexplained finding from RNA deep sequencing in mammalian cells.

Results

Here we analyze intron retention in T lymphocytes by deep sequencing polyadenylated RNA. We show a developmentally regulated RNA-binding protein, hnRNPLL, induces retention of specific introns by sequencing RNA from T cells with an inactivating Hnrpll mutation and from B lymphocytes that physiologically downregulate Hnrpll during their differentiation. In Ptprc mRNA encoding the tyrosine phosphatase CD45, hnRNPLL induces selective retention of introns flanking exons 4 to 6; these correspond to the cassette exons containing hnRNPLL binding sites that are skipped in cells with normal, but not mutant or low, hnRNPLL. We identify similar patterns of hnRNPLL-induced differential intron retention flanking alternative exons in 14 other genes, representing novel elements of the hnRNPLL-induced splicing program in T cells. Retroviral expression of a normally spliced cDNA for one of these targets, Senp2, partially corrects the survival defect of Hnrpll-mutant T cells. We find that integrating a number of computational methods to detect genes with differentially retained introns provides a strategy to enrich for alternatively spliced exons in mammalian RNA-seq data, when complemented by RNA-seq analysis of purified cells with experimentally perturbed RNA-binding proteins.

Conclusions

Our findings demonstrate that intron retention in mRNA is induced by specific RNA-binding proteins and suggest a biological significance for this process in marking exons that are poised for alternative splicing.  相似文献   
10.
The aggregation of the 37‐amino acid polypeptide human islet amyloid polypeptide (hIAPP), as either insoluble amyloid or as small oligomers, appears to play a direct role in the death of human pancreatic β‐islet cells in type 2 diabetes. hIAPP is considered to be one of the most amyloidogenic proteins known. The quick aggregation of hIAPP leads to the formation of toxic species, such as oligomers and fibers, that damage mammalian cells (both human and rat pancreatic cells). Whether this toxicity is necessary for the progression of type 2 diabetes or merely a side effect of the disease remains unclear. If hIAPP aggregation into toxic amyloid is on‐path for developing type 2 diabetes in humans, islet amyloid polypeptide (IAPP) aggregation would likely need to play a similar role within other organisms known to develop the disease. In this work, we compared the aggregation potential and cellular toxicity of full‐length IAPP from several diabetic and nondiabetic organisms whose aggregation propensities had not yet been determined for full‐length IAPP.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号