首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   3篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2012年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   5篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
1.
Optical tweezers are a powerful tool for the study of single biomolecules. Many applications require that a molecule be held under constant tension while its extension is measured. We present two schemes based on scanning-line optical tweezers to accomplish this, providing all-optical alternatives to force-clamp traps that rely on electronic feedback to maintain constant-force conditions for the molecule. In these schemes, a laser beam is rapidly scanned along a line in the focal plane of the microscope objective, effectively creating an extended one-dimensional optical potential over distances of up to 8 microm. A position-independent lateral force acting on a trapped particle is created by either modulating the laser beam intensity during the scan or by using an asymmetric beam profile in the back focal plane of the microscope objective. With these techniques, forces of up to 2.69 pN have been applied over distances of up to 3.4 microm with residual spring constants of <26.6 fN/microm. We used these techniques in conjunction with a fast position measurement scheme to study the relaxation of lambda-DNA molecules against a constant external force with submillisecond time resolution. We compare the results to predictions from the wormlike chain model.  相似文献   
2.
3.
The present study reports the validation of cancer nanotherapy using proanthocyanidin (PAC). Nowadays, in vitro and in vivo deliveries of nanoparticle (NPs) drugs have been paid more attention, intensively. Moreover, the current chemotherapeutic drugs have few first rate drawbacks including lack of specificity and requirement of excessive drug doses. To overcome this problem of chemotherapy, the attainment of high drug loading in combination with degradable polymer nanoparticles (for instance,chitosan) is a trending research in cancer biology. Hence, in this study, the synthesized PAC-AgNPs were successfully crosslinked with chitosan nanoparticles (CS-PAC-AgNPs), which were found to be spherical or polygonal in shape with a median size of 70.68 nm and 52.16 nm as observed by FTIR, FESEM and TEM analysis; thus, being suitable for drug delivery. CS-PAC-AgNPs were taken up via endocytosis by cancer cells and enabled the release cytochrome-C from mitochondria, followed by dysregulation of anti-apoptotic protein Bcl2 family, inducing the apoptotic mediated activation of caspase 9 and 3. To identify the genotoxicity of the synthesized CS-PAC-AgNPs, the mortality, hatching rate, malformation and abnormalities of embryo/larvae of the vertebrate zebra fish model (Danio rerio) were observed in a dose-time-dependent manner. This improved cancer nanotherapy can thus be utilized as a novel nanocombination for inducing apoptosis in vitro and in vivo.  相似文献   
4.

Background

Current blood based diagnostic assays to detect heart failure (HF) have large intra-individual and inter-individual variations which have made it difficult to determine whether the changes in the analyte levels reflect an actual change in disease activity. Human saliva mirrors the body’s health and well being and ∼20% of proteins that are present in blood are also found in saliva. Saliva has numerous advantages over blood as a diagnostic fluid which allows for a non-invasive, simple, and safe sample collection. The aim of our study was to develop an immunoassay to detect NT-proBNP in saliva and to determine if there is a correlation with blood levels.

Methods

Saliva samples were collected from healthy volunteers (n = 40) who had no underlying heart conditions and HF patients (n = 45) at rest. Samples were stored at −80°C until analysis. A customised homogeneous sandwich AlphaLISA(R) immunoassay was used to quantify NT-proBNP levels in saliva.

Results

Our NT-proBNP immunoassay was validated against a commercial Roche assay on plasma samples collected from HF patients (n = 37) and the correlation was r2 = 0.78 (p<0.01, y = 1.705× +1910.8). The median salivary NT-proBNP levels in the healthy and HF participants were <16 pg/mL and 76.8 pg/mL, respectively. The salivary NT-proBNP immunoassay showed a clinical sensitivity of 82.2% and specificity of 100%, positive predictive value of 100% and negative predictive value of 83.3%, with an overall diagnostic accuracy of 90.6%.

Conclusion

We have firstly demonstrated that NT-proBNP can be detected in saliva and that the levels were higher in heart failure patients compared with healthy control subjects. Further studies will be needed to demonstrate the clinical relevance of salivary NT-proBNP in unselected, previously undiagnosed populations.  相似文献   
5.
Recent evidence suggests an important role for outer retinal cells in the pathogenesis of diabetic retinopathy (DR). Here we investigated the effect of the visual cycle inhibitor retinylamine (Ret-NH2) on the development of early DR lesions. Wild-type (WT) C57BL/6J mice (male, 2 months old when diabetes was induced) were made diabetic with streptozotocin, and some were given Ret-NH2 once per week. Lecithin-retinol acyltransferase (LRAT)-deficient mice and P23H mutant mice were similarly studied. Mice were euthanized after 2 (WT and Lrat−/−) and 8 months (WT) of study to assess vascular histopathology, accumulation of albumin, visual function, and biochemical and physiological abnormalities in the retina. Non-retinal effects of Ret-NH2 were examined in leukocytes treated in vivo. Superoxide generation and expression of inflammatory proteins were significantly increased in retinas of mice diabetic for 2 or 8 months, and the number of degenerate retinal capillaries and accumulation of albumin in neural retina were significantly increased in mice diabetic for 8 months compared with nondiabetic controls. Administration of Ret-NH2 once per week inhibited capillary degeneration and accumulation of albumin in the neural retina, significantly reducing diabetes-induced retinal superoxide and expression of inflammatory proteins. Superoxide generation also was suppressed in Lrat−/− diabetic mice. Leukocytes isolated from diabetic mice treated with Ret-NH2 caused significantly less cytotoxicity to retinal endothelial cells ex vivo than did leukocytes from control diabetics. Administration of Ret-NH2 once per week significantly inhibited the pathogenesis of lesions characteristic of early DR in diabetic mice. The visual cycle constitutes a novel target for inhibition of DR.  相似文献   
6.
Sequestration of Plasmodium falciparum-infected red blood cells (IRBCs) in the human placenta is mediated by chondroitin 4-sulfate (C4S). A cytoadherence assay using chondroitin sulfate proteoglycans (CSPGs) is widely used for studying C4S-IRBC interactions. Bovine tracheal chondroitin sulfate A (CSA) preparation lacking a major portion of core protein has been frequently used for the assay. Here the CSPG purified from bovine trachea and CSA were assessed for IRBC binding and the CS chains studied in detail for structure-activity relationship. The IRBCs bound at significantly higher density to the CSPG than CSA. The CS chains of CSPG/CSA are heterogeneous with varying levels of 4- and 6-sulfates, which are distributed such that approximately 80% of the 4-sulfated disaccharides are present as single and blocks of two or three separated by one to three 6-sulfated disaccharides. The remainder of the 4-sulfated disaccharides is present in blocks composed of 4-12 units, separated by 6-sulfated disaccharides. In the IRBC adherence inhibition analysis, CSA fragments with 88%-92% 4-sulfate were significantly less inhibitory than the intact CSA, indicating that the regions consisting of shorter 4-sulfated blocks efficiently bind IRBCs despite the presence of relatively high levels of 6-sulfate. This is because the 6-sulfated disaccharides have unsubstituted C-4 hydroxyls that are crucial for IRBC binding. The presence of high levels of 6-sulfate, however, significantly interfere with the IRBC binding activity of CSA, which otherwise would more efficiently bind IRBCs. Thus our study revealed the distribution pattern of 4- and 6-sulfate in bovine tracheal CSA and structural basis for IRBC binding.  相似文献   
7.
We have applied tethered particle microscopy (TPM) as a single molecule analysis tool to studies of the conformational dynamics of poly-uridine(U) messenger (m)RNA and 16S ribosomal (r)RNA molecules. Using stroboscopic total internal reflection illumination and rigorous selection criteria to distinguish from nonspecific tethering, we have tracked the nanometer-scale Brownian motion of RNA-tethered fluorescent microspheres in all three dimensions at pH 7.5, 22 degrees C, in 10 mM or 100 mM NaCl in the absence or presence of 10 mM MgCl(2). The addition of Mg(2+) to low-ionic strength buffer results in significant compaction and stiffening of poly(U) mRNA, but not of 16S rRNA. Furthermore, the motion of poly(U)-tethered microspheres is more heterogeneous than that of 16S rRNA-tethered microspheres. Analysis of in-plane bead motion suggests that poly(U) RNA, but less so 16S rRNA, can be modeled both in the presence and absence of Mg(2+) by a statistical Gaussian polymer model. We attribute these differences to the Mg(2+)-induced compaction of the relatively weakly structured and structurally disperse poly(U) mRNA, in contrast to Mg(2+)-induced reinforcement of existing secondary and tertiary structure contacts in the highly structured 16S rRNA. Both effects are nonspecific, however, as they are dampened in the presence of higher concentrations of monovalent cations.  相似文献   
8.
The structures of the bovine corneal chondroitin sulfate (CS) chains and the nature of core proteins to which these chains are attached have not been studied in detail. In this study, we show that structurally diverse CS chains are present in bovine cornea and that they are mainly linked to decorin core protein. DEAE-Sephacel chromatography fractionated the corneal chondroitin sulfate proteoglycans (CSPGs) into three distinct fractions, CSPG-I, CSPG-II, and CSPG-III. These CSPGs markedly differ in their CS and dermatan sulfate (DS) contents, and in particular the CS structure-the overall sulfate content and 4- to 6-sulfate ratio. In general, the CS chains of the corneal CSPGs have low to moderate levels (15-64%) of sulfated disaccharides and 0-30% DS content. Structural analysis indicated that the DS disaccharide units in the CS chains are segregated as large blocks. We have also assessed the suitability of the corneal CSPGs as an alternative to placental CSPG or the widely used bovine tracheal chondroitin sulfate A (CSA) for studying the structural interactions involved in the adherence of Plasmodium falciparum-infected red blood cells (IRBCs) to chondroitin 4-sulfate. The data demonstrate that the corneal CSPGs efficiently bind IRBCs, and that the binding strength is either comparable or significantly higher than the placental CSPG. In contrast, the IRBC binding strength of bovine tracheal CSA is markedly lower than the human placental and bovine corneal CSPGs. Thus, our data demonstrate that the bovine corneal CSPG but not tracheal CSA is suitable for studying structural interactions involved in IRBC-C4S binding.  相似文献   
9.
The glycosylphosphatidylinositol (GPI) anchors of Plasmodium falciparum are indispensable for parasite survival since merozoite surface proteins-1, -2, -4, -5, and -10, crucial for erythrocyte invasion, are GPI-anchored. Therefore, the GPI biosynthetic pathway can offer potential targets for novel anti-malarial drugs. Here, we characterized the putative P. falciparum PIG-B gene (PfPIGB) that encodes mannosyltransferase-III of GPI biosynthesis. PfPIGB mRNA is transcribed in a developmental stage specific manner. A protein corresponding to the expected size of PfPIG-B is expressed by the parasite and is localized in the endoplasmic reticulum. Treatment of parasites with PfPIG-B specific siRNA caused reduction in GPI synthesis, affecting the PIG-B specific GPI intermediate. These data demonstrate that PfPIG-B is functional and encodes mannosyltransferase-III of the parasite GPI biosynthesis. The parasite PfPIG-B is novel in that its signature sequence HKEHKI is unique and is only partially conserved as compared to HKEXRF signature motif of mammalian PIG-B enzymes.  相似文献   
10.
Molecular and Cellular Biochemistry - Colon cancer is one of the most commonly diagnosed cancers, and is a major cause of cancer morbidity and mortality worldwide. The objective of the present...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号