首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   2篇
  国内免费   1篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2009年   1篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1985年   1篇
  1984年   2篇
  1982年   1篇
  1981年   1篇
  1978年   2篇
  1973年   1篇
  1965年   1篇
排序方式: 共有38条查询结果,搜索用时 265 毫秒
1.
Examination of two diastereomeric analogs of somatostatin differing in stereochemistry at the tryptophan residue has revealed a high field resonance in the -Trp isomer which is assigned to the γ-methylene of Lys9. The extent of correlation of this shift with biologic activity for a series of analogs of somatostatin is discussed. From comparison of close analogs, it is suggested that the biologically active conformation of somatostatin at the receptor controlling insulin release is not the major conformation of this hormone in solution. It is suggested that the conformation of somatostatin at this receptor resembles more closely the solution conformation of analogs having tryptophan in the -configuration. This latter conformation places the Trp8-Lys9 side chains in close proximity, thus shifting the γ-methylene protons of Lys9 upfield.  相似文献   
2.
Although microorganisms largely drive many ecosystem processes, the relationship between microbial composition and their functioning remains unclear. To tease apart the effects of composition and the environment directly, microbial composition must be manipulated and maintained, ideally in a natural ecosystem. In this study, we aimed to test whether variability in microbial composition affects functional processes in a field setting, by reciprocally transplanting riverbed sediments between low- and high-salinity locations along the Nonesuch River (Maine, USA). We placed the sediments into microbial ‘cages'' to prevent the migration of microorganisms, while allowing the sediments to experience the abiotic conditions of the surroundings. We performed two experiments, short- (1 week) and long-term (7 weeks) reciprocal transplants, after which we assayed a variety of functional processes in the cages. In both experiments, we examined the composition of bacteria generally (targeting the 16S rDNA gene) and sulfate-reducing bacteria (SRB) specifically (targeting the dsrAB gene) using terminal restriction fragment length polymorphism (T-RFLP). In the short-term experiment, sediment processes (CO2 production, CH4 flux, nitrification and enzyme activities) depended on both the sediment''s origin (reflecting differences in microbial composition between salt and freshwater sediments) and the surrounding environment. In the long-term experiment, general bacterial composition (but not SRB composition) shifted in response to their new environment, and this composition was significantly correlated with sediment functioning. Further, sediment origin had a diminished effect, relative to the short-term experiment, on sediment processes. Overall, this study provides direct evidence that microbial composition directly affects functional processes in these sediments.  相似文献   
3.

Background

Different patterns of drug resistance are observed in treated and therapy naïve HIV-1 infected populations. Especially the NRTI-related M184I/V variants, which are among the most frequently encountered mutations in treated patients, are underrepresented in the antiretroviral naïve population. M184I/V mutations are known to have a profound effect on viral replication and tend to revert over time in the new host. However it is debated whether a diminished transmission efficacy of HIV variants with a reduced replication capacity can also contribute to the observed discrepancy in genotypic patterns.As dendritic cells (DCs) play a pivotal role in HIV-1 transmission, we used a model containing primary human Langerhans cells (LCs) and DCs to compare the transmission efficacy M184 variants (HIV-M184V/I/T) to HIV wild type (HIV-WT). As control, we used HIV harboring the NNRTI mutation K103N (HIV-K103N) which has a minor effect on replication and is found at a similar prevalence in treated and untreated individuals.

Results

In comparison to HIV-WT, the HIV-M184 variants were less efficiently transmitted to CCR5+ Jurkat T cells by both LCs and DCs. The transmission rate of HIV-K103N was slightly reduced to HIV-WT in LCs and even higher than HIV-WT in DCs. Replication experiments in CCR5+ Jurkat T cells revealed no apparent differences in replication capacity between the mutant viruses and HIV-WT. However, viral replication in LCs and DCs was in concordance with the transmission results; replication by the HIV-M184 variants was lower than replication by HIV-WT, and the level of replication of HIV-K103N was intermediate for LCs and higher than HIV-WT for DCs.

Conclusions

Our data demonstrate that drug resistant M184-variants display a reduced replication capacity in LCs and DCs which directly impairs their transmission efficacy. As such, diminished transmission efficacy may contribute to the lower prevalence of drug resistant variants in therapy naive individuals.
  相似文献   
4.
The nucleotide sugar precursor of the oleandrose units of the avermectins has been purified from a mutant of Streptomyces avermitilis, which does not synthesize any avermectins but which converts avermectin aglycones to their respective disaccharides. This precursor has been identified as dTDP-oleandrose. The purification was achieved by anion exchange and reverse phase high performance liquid chromatography. The purified nucleotide sugar had an absorption spectra characteristic of thymidine, released dTMP when treated with phosphodiesterase, and possessed an NMR spectrum in which three resonances characteristic of oleandrose were seen in addition to the thymidine signals. The enzyme, avermectin aglycone dTDP-oleandrose glycosyltransferase, which catalyzes the stepwise addition of oleandrose to the avermectin aglycones, has been demonstrated in cell-free extracts and (NH4)2SO4 fractions of cell-free extracts of S. avermitilis. The enzyme is specific for dTDP-oleandrose as the glycosyl donor but utilizes all avermectin aglycones as glycosyl acceptors. The stoichiometry between dTDP-oleandrose consumed in the reaction and oleandrose units transferred to the avermectin mono- and disaccharide was found to be 1:1.  相似文献   
5.
L-689,502 is a potent inhibitor of HIV-1 protease activity in vitro. Microbial biotransformations of L-689,502 by cultures belonging to the genus Streptomyces sp. were performed. Extracts of culture broths were examined for the production of metabolites of L-689,502 that could inhibit HIV-1 protease activity. One culture, MA 6804 (Streptomyces lavendulae, ATCC 55095), produced L-694,746 that, while being structurally related to L-689,502, is a novel metabolite and a potent inhibitor of HIV-1 protease.  相似文献   
6.
This report reviews the development of a rapidin situ approach to study the physiological responses of bacteria within biofilms to disinfectants. One method utilized direct viable counts (DVC) to assess the disinfection efficacy when thin biofilms were exposed to chlorine or monochloramine. Results obtained using the DVC method were one log higher than plate count (PC) estimates of the surviving population after disinfection. Other methods incorporated the use of fluorogenic stains, a cryotomy technique to yield thin (5-m) sections of biofilm communities and examination by fluorescence microscopy. The fluorogenic stains used in this approach included 5-cyano-2,3-ditolyl tetrazolium chloride (CTC), which indicates cellular electron transport activity and Rhodamine 123, which responds specifically to proton motive force. The use of these stains allowed the microscopic discrimination of physiologically active bacteria as well as heterogeneities of active cells within thicker biofilms. The results of experiments using these techniques with pure culture and binary population biofilms on stainless steel coupons indicated biocidal activity of chlorine-based disinfectants occurred initially at the bulk-fluid interface of the communities and progressed toward the substratum. This approach provided a unique opportunity to describe the spatial response of bacteria within biofilms to antimicrobial agents and address mechanisms explaining their comparative resistance to disinfection in a way that has not been possible using traditional approaches. Results obtained using this alternative approach were also consistently higher than PC data following disinfection. These observations suggest that traditional methods involving biofilm removal and bacterial enumeration by colony formation overestimate biocide efficacy. Hence the alternative approach described here more accurately indicates the ability of bacteria surviving disinfection to recover and grow as well as demonstrate spatial heterogeneities in cellular physiological activities within biofilms.  相似文献   
7.
CYP3A9 is an estrogen-inducible ortholog of human liver CYP3A4 with 76.5% sequence identity to CYP3A4. Unlike CYP3A4, it is a very poor testosterone 6beta- and 2beta-hydroxylase, but a relatively better catalyst of progesterone monohydroxylation largely at 6beta, 16alpha, and 21 positions with negligible 6beta, 21-dihydroxylation. We reasoned that such differences in substrate catalyses must be due to differences in the active site architecture of each CYP3A enzyme. Indeed, alignment of CYP3A4 substrate recognition sites (SRSs) with the corresponding regions of CYP3A9 sequence revealed that of the 22 fully divergent residues, 4 reside in SRS regions [P107N (SRS-1), M371G (SRS-5), and L479K and G480Q (SRS-6)]. Accordingly, we substituted these and other divergent CYP3A9 SRS residues with the corresponding residues of CYP3A4 and/or CYP3A5. Our findings of the influence of these site-directed mutations of the CYP3A9 active site on its catalysis of testosterone and three other established but structurally different CYP3A substrates (progesterone, imipramine, and carbamazepine) are described. These findings revealed that some mutations (N107P, N107S, V207T, G371M, and Q480G) not only improved the ability of CYP3A9 to hydroxylate testosterone at the 6beta and 2beta positions, but also converted it into a robust progesterone 6beta, 21-dihydroxylase. The latter in the case of CYP3A9N107P was accompanied by a shift from sigmoidal to hyperbolic enzyme-substrate kinetics. In contrast, the catalytic potential of CYP3A9 mutants K206N, K206S, M240V, and K479L/Q480G was either relatively unchanged or negligible to nonexistent. Together these findings attest to the unique substrate-active site fit of each CYP3A enzyme.  相似文献   
8.
Administration of the cytochrome P450 (P450) suicide inactivator allylisopropylacetamide (AIA) to phenobarbital (PB)-pretreated rats results in rapid and marked inactivation of several liver endoplasmic reticulum (ER)-bound P450s. A few of these such as CYP2B1, inactivated due to AIA-mediated prosthetic heme N-alkylation, can be structurally and functionally restored nearly completely by exogenous hemin in vivo or in vitro. Such in vitro hemin-mediated reassembly is unsuccessful with purified AIA-inactivated CYP2B1 and, as shown herein, is not very effective even when heme is incubated with just the corresponding liver microsomes that contain the reconstitutable CYP2B1 protein, thereby implicating a requirement for additional factors provided by the intact liver cell homogenates, ER, and/or cytosol. Using various approaches that include high-performance liquid chromatographic fractionation of the liver cytosolic subfraction as well as chemical and immunological probes such as the Hsp90/GRP94-specific inhibitor geldanamycin (GA) and polyclonal anti-GRP94 antibodies, respectively, we now demonstrate that the in vitro hemin-mediated reassembly of heme-stripped microsomal CYP2B1 requires GSH as well as the ER chaperone GRP94, but not the cytosolic chaperone heat shock protein 90. It remains to be determined whether GSH acts directly or indirectly, via a putative ER thiol reductase, to maintain the conserved active site cysteine-thiol (Cys436 in CYP2B1) in a reduced state, competent for heme binding and repair.  相似文献   
9.

Background

Riboflavin (RF) or vitamin B2 is known to have neuroprotective effects. In the present study, we report the attenuation of the neuroprotective effects of RF under UV-B irradiation. Preconditioning of UV-B irradiated riboflavin (UV-B-RF) showed attenuated neuroprotective effects compared to that of RF in SH-SY5Y neuroblostoma cell line and primary cortical neurons in vitro and a rat model of cerebral ischemia in vivo.

Results

Results indicated that RF pretreatment significantly inhibited cell death and reduced LDH secretion compared to that of the UV-B-RF pretreatment in primary cortical neuron cultures subjected to oxygen glucose deprivation in vitro and cortical brain tissue subjected to ischemic injury in vivo. Further mechanistic studies using cortical neuron cultures revealed that RF treatment induced increased miR-203 expression which in turn inhibited c-Jun expression and increased neuronal cell survival. Functional assays clearly demonstrated that the UV-B-RF preconditioning failed to sustain the increased expression of miR-203 and the decreased levels of c-Jun, mediating the neuroprotective effects of RF. UV-B irradiation attenuated the neuroprotective effects of RF through modulation of the miR-203/c-Jun signaling pathway.

Conclusion

Thus, the ability of UV-B to serve as a modulator of this neuroprotective signaling pathway warrants further studies into its role as a regulator of other cytoprotective/neuroprotective signaling pathways.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号