首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   229篇
  免费   11篇
  2021年   3篇
  2020年   3篇
  2019年   3篇
  2017年   3篇
  2016年   3篇
  2014年   6篇
  2013年   7篇
  2012年   15篇
  2011年   11篇
  2010年   4篇
  2009年   10篇
  2008年   9篇
  2007年   11篇
  2006年   2篇
  2005年   11篇
  2004年   12篇
  2003年   8篇
  2002年   6篇
  2001年   2篇
  2000年   5篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1995年   2篇
  1993年   2篇
  1992年   9篇
  1991年   3篇
  1990年   2篇
  1989年   5篇
  1987年   3篇
  1986年   7篇
  1985年   3篇
  1984年   5篇
  1983年   4篇
  1982年   2篇
  1981年   6篇
  1980年   3篇
  1979年   4篇
  1978年   2篇
  1977年   5篇
  1976年   2篇
  1975年   4篇
  1974年   4篇
  1973年   2篇
  1972年   3篇
  1971年   2篇
  1970年   2篇
  1968年   2篇
  1967年   2篇
  1966年   2篇
排序方式: 共有240条查询结果,搜索用时 15 毫秒
1.
In this study we have measured, under experimental conditions which maintained efficient coupling, respiratory intensity, respiratory control, oxidative phosphorylation capacity and protonmotive force. Succinate cytochrome-c reductase and cytochrome-c oxidase activities were also studied. These investigations were carried out using kidney mitochondria from cyclosporine-treated rats (in vivo studies) and from untreated rats in the presence of cyclosporine (in vitro studies). Inhibition of respiratory intensity by cyclosporine did not exceed 21.1% in vitro and 15.9% in vivo. Since there was no in vitro inhibition of succinate cytochrome-c reductase and cytochrome-c oxidase activities, the slowing of electron flow observed can be interpreted as a consequence of an effect produced by cyclosporine between cytochromes b and c1. Cyclosporine had no effect on respiratory control either in vitro or in vivo. Statistically significant inhibition of the oxidative phosphorylation was observed both in vitro (6.6%) and in vivo (12.1%). Moreover, cyclosporine did not induce any change of membrane potential either in vivo or in vitro. Our findings show that cyclosporine is neither a protonophore, nor a potassium ionophore. In cyclosporine-treated rats we noticed a decrease of protein in subcellular fraction, including the mitochondrial fraction. The role of the inhibition respiratory characteristics by cyclosporine in nephrotoxicity in vivo must take account of these two parameters: inhibition of the respiratory characteristics measured in vitro and diminution of mitochondrial protein in cyclosporine-treated rats.  相似文献   
2.
3.
Protein tyrosine kinase (PTK) blockers which competitively inhibit the kinase activity of insulin receptors were synthesized and their properties examined. The best insulin receptor kinase (IRK) inhibitors possess either one hydroxyphenyl ring and two carboxyl groups or two phenyl rings and one carboxyl group. All the inhibitors, except tBoc-tyrosine aminomalonate, effectively block the IRK-catalyzed phosphorylation of exogenous substrate, but only partially block receptor autophosphorylation. These PTK blockers inhibit the insulin induced [14C]glucose assimilation into lipids (lipogenesis), but fail to inhibit the anti-lipolytic effect of the hormone. Only tBocTyr-aminomalonate was found to inhibit all the effects of insulin measured: insulin-stimulated phosphorylation of exogenous substrate, IRK autophosphorylation, insulin-dependent lipogenesis and the insulin-dependent anti-lipolytic effect. This inhibitor is the first blocker which is reported to block insulin-dependent anti-lipolysis. The inhibitors examined are devoid of general adverse effects since they have no effect on insulin-independent lipolysis, on [U14C]fructose assimilation or on (-)isoproterenol-stimulated lipolysis. These studies suggest that insulin-dependent lipogenesis and anti-lipolysis may be mediated by two distinguishable signalling pathways. This study also suggests that PTK inhibitors may become useful tools in the investigation of the signalling pathways of PTKs.  相似文献   
4.
A novel technique was designed to conveniently determine substrate phosphorylation by tyrosine kinase. The technique is based on quantitation of phosphotyrosine content of the phosphoproteins, generated during the enzyme reaction, by radioimmunoassay. Here, we utilized high-titer monoclonal antibodies to phosphotyrosine, and radioiodinated bovine serum albumin-phosphotyrosine conjugate. The radiolabeled antigen was displaced from the complex formed in the assay by unlabeled phosphotyrosine, phosphotyrosine derivatives or phosphotyrosine-containing protein substrates. Half-maximal displacement was achieved at 0.4 +/- 0.05 microM by free phosphotyrosine, and at 40 +/- 3 and 45 +/- 4 nM by acetyl-phosphotyrosine and acetyl-phosphotyrosyl-glycine ethyl ester, respectively. Neither phosphoserine, phosphothreonine nor ATP cross-reacted with the phosphotyrosine antibodies. None of the components of the enzyme reaction interfered in the RIA. The method allows quantitation of the incorporated phosphate into tyrosyl residues without interference of serine/threonine phosphorylation. This technique avoids the use of short-lived [gamma-32P]ATP and omits the separation of the phosphorylated substrate from excess nucleotide.  相似文献   
5.
The relationship between active transport of lactose via the lactose permease and the protonmotive force has been determined in E. coli cells using either the respiratory chain inhibitor cyanide or protonophores to decrease the protonmotive force progressively. In contradiction with the prediction of the delocalized chemiosmotic theory, two different relationships were obtained depending on the method used.  相似文献   
6.
Treatment of amino acids, peptides, and proteins with aqueous solution of dimethyl sulfoxide (Me2SO) and hydrochloric acid (HCl) resulted in the oxidation of methionine to methionine sulfoxide. In addition to methionine, SH groups are also oxidized, but this reaction proceeds after a lag period of 2 h. Other amino acids are not modified by aqueous Me2SO/HCl. The reaction is strongly pH-dependent. Optimal conditions are 1.0 M HCl, 0.1 M Me2SO, at 22 degrees C. The reaction exhibits pseudo-first order kinetics with Kobs = 0.23 +/- 0.015 M-1 min-1 at 22 degrees C. Incubation of methionine sulfoxide with dimethyl sulfide and HCl resulted in the conversion of methionine sulfoxide to methionine. This reaction is fast (t1/2 = 4 min at room temperature) and quantitative at relatively anhydrous condition (i.e. at H2O:concentrated HCl:dimethyl sulfide ratio of 2:20:1). Quantitative conversions of methionine sulfoxide back to methionine are obtained in peptides and proteins as well, with no observable other side reactions in amino acids and proteins. The wide applications of this selective oxidation and reduction of methionine residues are demonstrated and discussed.  相似文献   
7.
In the preceding paper (Shechter, Y., and Ron, A. (1986) J. Biol. Chem. 261, 14945-14950) we have shown that in fat cells, prepared and maintained in an isotonic buffer (pH 7.4) containing neither phosphate nor bicarbonate anions (Buffer A), the dose-response curve to insulin shifted to the right by about 2 logarithms and insulin binding affinity or capacity was only slightly decreased. In the current paper we demonstrate that progressive loss of insulin binding, either by treatment with trypsin or preincubating the cells with isoproterenol, correlates well with the reduced ability of the cells to elicit maximal lipogenesis in response to insulin. We further demonstrate in the "new" system that: the dissociation of labeled insulin from fat cells is not accelerated by the inclusion of unlabeled insulin in the medium; termination of lipogenesis in Buffer A occurs immediately; ligand-induced receptor internalization is grossly defective; and insulin is unable to stimulate lipogenesis at 15 degrees C. The data support the hypothesis that in the new experimental system all measurable binding sites are linked to a coupling mechanism. Each site behaves as an independent, separate entity and there are no site to site interactions. This leads to a linear relationship between binding and bioactivation, lack of negative or positive cooperatively, accelerated rate of termination, defective internalization, a shift to the right in the dose-response curve to insulin, and a lack of insulin response at a lower temperature. In more general terms, the study indicates that all measurable insulin receptors are chemically homogeneous in their potential capability to be coupled to an insulin effector (biologically relevant) system, and they do so under particular experimental conditions.  相似文献   
8.
The addition of 0.4-3 mM of cis-unsaturated fatty acids such as oleic acid (18:1) or linoleic acid (18:2) to intact rat adipocytes stimulated lipogenesis at 37 degrees C. Saturated or trans-unsaturated fatty acids were ineffective. Fluorescence photobleaching recovery studies performed under similar conditions indicated that the cis-unsaturated fatty acids do not alter lateral mobility of either a lipid probe or a general protein marker in the plasma membrane. A high concentration (7 mM) of Ca2+, which by itself has some stimulatory effect on lipogenesis, significantly potentiated the effect of oleic acid on this insulin-like activity. Measurement of 45Ca2+ binding by fat cells has indicated that cis-unsaturated (but not saturated) fatty acids increased 12- to 20-fold the amount of Ca2+ associated with the cells. The dependence of this effect on the fatty acid concentration correlates well with the effect of the fatty acid on the induction of lipogenesis. Our results suggest that cis-unsaturated fatty acids affect membrane organization in a manner which induces a significant increase in membrane associated or intracellular Ca2+. This increase may be responsible for inducing exocytotic-like processes which facilitate translocation of glucose transport activity from storage sites to the plasma membrane and thus produce an insulin-like effect.  相似文献   
9.
The addition of 200 pM monoiodinated human atrial natriuretic factor-(99-126) (125I-hANF) to cultured bovine aortic smooth muscle cells at 37 degrees C resulted in a rapid clearance from the medium (t1/2 approximately 7.5 min). Within 5 min, [125I]iodotyrosine126 (125I-Y), Arg125-[125I]iodotyrosine126 (125I-RY) and Phe124-Arg-[125]iodotyrosine126 (125I-FRY) appeared in the medium. The identities of these degradation products were confirmed by 1) retention time on high performance liquid chromatography (HPLC) relative to standards, 2) products generated by digestion with aminopeptidase M, and 3) the absence of the Met110. Preincubation of the cells with ammonium chloride or chloroquine resulted in a significant increase in the intracellular accumulation of radiolabel, indicative of endocytosis and rapid delivery of 125I-hANF to an acidic intracellular compartment (endosome and/or lysosome). Neither ammonium chloride, chloroquine, nor excess unlabeled hANF blocked the rapid appearance in the medium of 125I-RY or 125I-FRY. Bestatin inhibited the generation of 125I-RY, with a concomitant increase in 125I-FRY, suggesting that the 125I-RY is produced by aminopeptidase action on 125I-FRY. The endopeptidase 24.11 (enkephalinase) inhibitor, SCH 39370, did not inhibit the formation of 125I-FRY. These results provide evidence of a peptidase capable of specifically removing the COOH-terminal tripeptide from 125I-hANF. The COOH-terminal tripeptide, Phe124-Arg-Tyr126, was also isolated from cell digests of hANF by HPLC and its identity confirmed by amino acid analysis. Since it is generally believed that the COOH-terminal tripeptide is critical to many of atrial natriuretic factor-(99-126)'s bioactivities, this enzyme may be involved in the inactivation of atrial natriuretic factor-(99-126) in target tissues.  相似文献   
10.
A Shisheva  Y Shechter 《Biochemistry》1992,31(34):8059-8063
We report here that quercetin, a naturally occurring bioflavonoid, is an effective blocker of insulin receptor tyrosine kinase-catalyzed phosphorylation of exogenous substrate. The ID50 was estimated to be 2 +/- 0.2 microM in cell-free experiments, using a partially purified insulin receptor and a random copolymer of glutamic acid and tyrosine as a substrate. Insulin-stimulated autophosphorylation of the receptor itself was not blocked by quercetin (up to 500 microM). In intact rat adipocytes, quercetin inhibited insulin-stimulating effects on glucose transport, oxidation, and its incorporation into lipids. Inhibition of lipogenesis (50%) occurred at 47 +/- 4 microM, whereas full inhibition was evident at 110 +/- 10 microM quercetin. In contrast, the effect of insulin in inhibiting lipolysis remained unaltered in quercetin-treated adipocytes. The inhibitor was devoid of general adverse cell affects. Basal activities and the ability of lipolytic agents to stimulate lipolysis were not affected. Inhibition by quercetin enabled us to evaluate which insulinomimetic agents are dependent on tyrosine phosphorylation of endogenous substrates for stimulating glucose metabolism. Quercetin blocked lipogenesis mediated by insulin, wheat germ agglutinin, and concanavalin A. The lipogenic effect of Zn2+ and Mn2+ was partially blocked, whereas that of vanadate was not affected at all.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号