首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   589篇
  免费   38篇
  2024年   2篇
  2023年   5篇
  2022年   9篇
  2021年   27篇
  2020年   11篇
  2019年   11篇
  2018年   22篇
  2017年   16篇
  2016年   25篇
  2015年   28篇
  2014年   31篇
  2013年   45篇
  2012年   55篇
  2011年   44篇
  2010年   36篇
  2009年   24篇
  2008年   31篇
  2007年   32篇
  2006年   27篇
  2005年   27篇
  2004年   24篇
  2003年   18篇
  2002年   16篇
  2001年   3篇
  2000年   2篇
  1999年   11篇
  1998年   6篇
  1997年   3篇
  1996年   1篇
  1995年   2篇
  1994年   3篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1986年   1篇
  1985年   5篇
  1984年   7篇
  1983年   1篇
  1982年   3篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1974年   2篇
  1967年   1篇
排序方式: 共有627条查询结果,搜索用时 15 毫秒
1.
Mutations in the LCAT gene cause familial LCAT deficiency (Online Mendelian Inheritance in Man ID: #245900), a very rare metabolic disorder. LCAT is the only enzyme able to esterify cholesterol in plasma, whereas sterol O-acyltransferases 1 and 2 are the enzymes esterifying cellular cholesterol in cells. Despite the complete lack of LCAT activity, patients with familial LCAT deficiency exhibit circulating cholesteryl esters (CEs) in apoB-containing lipoproteins. To analyze the origin of these CEs, we investigated 24 carriers of LCAT deficiency in this observational study. We found that CE plasma levels were significantly reduced and highly variable among carriers of two mutant LCAT alleles (22.5 [4.0–37.8] mg/dl) and slightly reduced in heterozygotes (218 [153–234] mg/dl). FA distribution in CE (CEFA) was evaluated in whole plasma and VLDL in a subgroup of the enrolled subjects. We found enrichment of C16:0, C18:0, and C18:1 species and a depletion in C18:2 and C20:4 species in the plasma of carriers of two mutant LCAT alleles. No changes were observed in heterozygotes. Furthermore, plasma triglyceride-FA distribution was remarkably similar between carriers of LCAT deficiency and controls. CEFA distribution in VLDL essentially recapitulated that of plasma, being mainly enriched in C16:0 and C18:1, while depleted in C18:2 and C20:4. Finally, after fat loading, chylomicrons of carriers of two mutant LCAT alleles showed CEs containing mainly saturated FAs. This study of CEFA composition in a large cohort of carriers of LCAT deficiency shows that in the absence of LCAT-derived CEs, CEs present in apoB-containing lipoproteins are derived from hepatic and intestinal sterol O-acyltransferase 2.  相似文献   
2.
A severe case of myiasis is reported in an Italian technician working in a forest yard in Illubabor (Ethiopia). The patient returned to Italy with fever, malaise and scattered skin lesions: these were papular at first, and later developed into furuncle-like, intensely burning boils which spread all over the body. Neutrophilic leukocytosis was present associated with increased IgA. From the lesions, 150 larvae were recovered and identified as Cordylobia rodhaini Gedoelst (Diptera, Calliphoridae), a myiasis agent adapted to various thin-skinned mammals in African forests, rarely observed in man. This is the first case recorded in Ethiopia and represents the most massive invasion by Cordylobia spp. published so far. The 3rd stage larva is described with some morphological details not reported by previous authors.  相似文献   
3.
The occurrence of hydroxymethylglutaryl coenzyme A (HMG-CoA) reductase in adult Hymenolepis diminuta was demonstrated. This activity was negligible in the cestode's cytosolic fraction but was noted when the mitochondrial or microsomal fraction served as the enzyme source. The predominant localization of HMG-CoA reductase activity was with the microsomal fraction. This fraction did not contain appreciable mitochondrial contamination based on the distribution of marker enzymes. The enzymatic nature of HMG-CoA conversion to mevalonic acid by either fraction was apparent because the reaction was heat labile and responded linearly to time of assay and protein content. The enzymatic reduction of HMG-CoA absolutely required NADPH when either fraction was assayed. The lesser activity of the mitochondrial fraction was membrane-associated. The predominant localization of HMG-CoA reductase activity with microsomal membranes and its separation with the membranous component of the mitochondrial fraction suggest that mitochondrial activity reflects the presence of microsomal membranes. In its predominant localization and pyridine nucleotide requirement, the cestode's HMG-CoA reductase activity resembles that of mammalian systems. The finding of HMG-CoA reductase provides an enzymatic mechanism for the intermediate conversion of HMG-CoA to mevalonic acid that would be needed for acetate-dependent isoprenoid lipid synthesis by adult H. diminuta.  相似文献   
4.
Prp20/Srm1, a homolog of the mammalian protein RCC1 in Saccharomyces cerevisiae, binds to double-stranded DNA (dsDNA) through a multicomponent complex in vitro. This dsDNA-binding capability of the Prp20 complex has been shown to be cell-cycle dependent; affinity for dsDNA is lost during DNA replication. By analyzing a number of temperature sensitive (ts) prp20 alleles produced in vivo and in vitro, as well as site-directed mutations in highly conserved positions in the imperfect repeats that make up the protein, we have determined a relationship between the residues at these positions, cell viability, and the dsDNA-binding abilities of the Prp20 complex. These data reveal that the essential residues for Prp20 function are located mainly in the second and the third repeats at the amino-terminus and the last two repeats, the seventh and eighth, at the carboxyl-terminus of Prp20. Carboxyl-terminal mutations in Prp20 differ from amino-terminal mutations in showing loss of dsDNA binding: their conditional lethal phenotype and the loss of dsDNA binding affinity are both suppressible by overproduction of Gsp1, a GTP-binding constituent of the Prp20 complex, homologous to the mammalian protein TC4/Ran. Although wild-type Prp20 does not bind to dsDNA on its own, two mutations in conserved residues were found that caused the isolated protein to bind dsDNA. These data imply that, in situ, the other components of the Prp20 complex regulate the conformation of Prp20 and thus its affinity for dsDNA. Gsp1 not only influences the dsDNA-binding ability of Prp20 but it also regulates other essential function(s) of the Prp20 complex. Overproduction of Gsp1 also suppresses the lethality of two conditional mutations in the penultimate carboxyl-terminal repeat of Prp20, even though these mutations do not eliminate the dsDNA binding activity of the Prp20 complex. Other site-directed mutants reveal that internal and carboxyl-terminal regions of Prp20 that lack homology to RCC1 are dispensable for dsDNA binding and growth.  相似文献   
5.
Abstract Escherichia coli heat-labile enterotoxin B subunit (EtxB) has been proposed as a potential protein carrier for the delivery of heterologous peptides to target cells, particularly for the oral delivery of epitopes to the mucosal immune system. In this study, two extensions to the C-terminus of EtxB were genetically engineered that correspond to a well-characterized neutralising epitope of glycoprotein D from herpes simplex virus (EtxB-gD) and to the C-terminal nine amino acids from the 38 kDa subunit of HSV-encoded ribonucleotide reductase (EtxB-R2). Here we describe the extracellular secretion of the two hybrid EtxBs from a marine Vibrio harbouring a broad-host range inducible expression vector containing the hybrid genes. Large amounts of intact fusion proteins (15–20 mg per liter of culture) were secreted into the medium upon induction. These hybrid proteins maintained the receptor-binding activity of the native toxin as well as being cross-reactive with anti-EtxB and anti-heterologous peptide monoclonal antibodies.  相似文献   
6.
Prp20/Srm1, a homolog of the mammalian protein RCC1 in Saccharomyces cerevisiae, binds to double-stranded DNA (dsDNA) through a multicomponent complex in vitro. This dsDNA-binding capability of the Prp20 complex has been shown to be cell-cycle dependent; affinity for dsDNA is lost during DNA replication. By analyzing a number of temperature sensitive (ts) prp20 alleles produced in vivo and in vitro, as well as site-directed mutations in highly conserved positions in the imperfect repeats that make up the protein, we have determined a relationship between the residues at these positions, cell viability, and the dsDNA-binding abilities of the Prp20 complex. These data reveal that the essential residues for Prp20 function are located mainly in the second and the third repeats at the amino-terminus and the last two repeats, the seventh and eighth, at the carboxyl-terminus of Prp20. Carboxyl-terminal mutations in Prp20 differ from amino-terminal mutations in showing loss of dsDNA binding: their conditional lethal phenotype and the loss of dsDNA binding affinity are both suppressible by overproduction of Gsp1, a GTP-binding constituent of the Prp20 complex, homologous to the mammalian protein TC4/Ran. Although wild-type Prp20 does not bind to dsDNA on its own, two mutations in conserved residues were found that caused the isolated protein to bind dsDNA. These data imply that, in situ, the other components of the Prp20 complex regulate the conformation of Prp20 and thus its affinity for dsDNA. Gsp1 not only influences the dsDNA-binding ability of Prp20 but it also regulates other essential function(s) of the Prp20 complex. Overproduction of Gsp1 also suppresses the lethality of two conditional mutations in the penultimate carboxyl-terminal repeat of Prp20, even though these mutations do not eliminate the dsDNA binding activity of the Prp20 complex. Other site-directed mutants reveal that internal and carboxyl-terminal regions of Prp20 that lack homology to RCC1 are dispensable for dsDNA binding and growth.  相似文献   
7.
It is shown that the reaction of RhCl3·3H2O with acetonitrile normally produces mixtures of mer- and fac-[RhCl3(CH3CN)3] (1a and 1b, respectively). The IR and 1H NMR spectra of these isomers were re-investigated. Their two-dimensional (103Rh,1H) NMR spectra were also recorded. Equilibrium and exchange studies of 1a and 1b in CD3C were performed. It was found that in 1a the exchange rate of the nitrile molecule trans to Cl is much faster than those of mutually trans nitriles. Also the nitrile molecules in 1b underwent fast exchange in CD3CN; however, their rate was slightly faster than that of the more labile CH3CN in 1a. The X-ray crystal structure of mer-[RhCl3(CH3CN)3]·CH3CN (1c) was determined. Crystal data: triclinic space group .  相似文献   
8.
Modifications on the binding of uric acid to human plasma proteins have been studied in regularly menstruating females aged 25-30 years with a normal cycle, in comparison with a group of healthy age-matched males and with a group of post-menopausal females. The binding of uric acid to plasma proteins was estimated using micropartition system Amicon. The results obtained demonstrate a significant increase of uric acid binding during ovulatory and mid-luteal phase of menstrual cycle. No modifications are shown in post-menopausal females and in healthy males. No modifications have been shown with the same experiments performed in vitro.  相似文献   
9.
Acetylpyridine NADP replaced NADP in promoting the Mn2+ ion-requiring mitochondrial "malic" enzyme of Hymenolepis diminuta. Disrupted mitochondria displayed low levels of an apparent oxaloacetate-forming malate dehydrogenase activity when NAD or acetylpyridine NAD served as the coenzyme. Significant malate-dependent reduction of acetylpyridine NAD by H. diminuta mitochondria required Mn2+ ion and NADP, thereby indicating the tandem operation of "malic" enzyme and NADPH:NAD transhydrogenase. Incubation of mitochondrial preparations with oxaloacetate resulted in a non-enzymatic decarboxylation reaction. Coupling of malate oxidation with electron transport via the "malic" enzyme and transhydrogenase was demonstrated by polarographic assessment of mitochondrial reduced pyridine nucleotide oxidase activity.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号