首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   144篇
  免费   11篇
  2023年   2篇
  2022年   3篇
  2021年   8篇
  2020年   1篇
  2019年   11篇
  2018年   4篇
  2017年   1篇
  2016年   3篇
  2015年   5篇
  2014年   8篇
  2013年   6篇
  2012年   15篇
  2011年   12篇
  2010年   8篇
  2009年   9篇
  2008年   8篇
  2007年   6篇
  2006年   4篇
  2005年   7篇
  2004年   9篇
  2003年   13篇
  2002年   4篇
  2001年   1篇
  2000年   2篇
  1998年   1篇
  1996年   2篇
  1993年   1篇
  1990年   1篇
排序方式: 共有155条查询结果,搜索用时 15 毫秒
1.
Journal of Plant Growth Regulation - Plants require optimum amounts of nutrients for suitable growth and yield production. Accordingly, the most efficient methods of fertilization, including the...  相似文献   
2.
3.
4.
Targeted delivery of therapeutic molecules into cancer cells is considered as a promising strategy to tackle cancer. Antibody–drug conjugates (ADCs), in which a monoclonal antibody (mAb) is conjugated to biologically active drugs through chemical linkers, have emerged as a promising class of anticancer treatment agents, being one of the fastest growing fields in cancer therapy. The failure of early ADCs led researchers to explore strategies to develop more effective and improved ADCs with lower levels of unconjugated mAbs and more-stable linkers between the drug and the antibody, which show improved pharmacokinetic properties, therapeutic indexes, and safety profiles. Such improvements resulted in the US Food and Drug Administration approvals of brentuximab vedotin, trastuzumab emtansine, and, more recently, inotuzumab ozogamicin. In addition, recent clinical outcomes have sparked additional interest, which leads to the dramatically increased number of ADCs in clinical development. The present review explores ADCs, their main characteristics, and new research developments, as well as discusses strategies for the selection of the most appropriate target antigens, mAbs, cytotoxic drugs, linkers, and conjugation chemistries.  相似文献   
5.
Acute renal failure (ARF) is a clinical challenge that is highly resistant to treatment, and its high rate of mortality is alarming. Ischemia–reperfusion injury (IRI) is the most common cause of ARF. Especially IRI is implicated in kidney transplantation and can determine graft survival. Although the exact pathophysiology of renal IRI is unknown, the role of inflammatory responses has been elucidated. Because mesenchymal stromal cells (MSCs) have strong immunomodulatory properties, they are under extensive investigation as a therapeutic modality for renal IRI. Extracellular vesicles (EVs) play an integral role in cell-to-cell communication. Because the regenerative potential of the MSCs can be recapitulated by their EVs, the therapeutic appeal of MSC-derived EVs has dramatically increased in the past decade. Higher safety profile and ease of preservation without losing function are other advantages of EVs compared with their producing cells. In the current review, the preliminary results and potential of MSC-derived EVs to alleviate kidney IRI are summarized. We might be heading toward a cell-free approach to treat renal IRI.  相似文献   
6.
7.
8.
9.
10.
Amputated tissue maintained in a hypothermic environment can endure prolonged ischemia and improve replantation success. The authors hypothesized that local tissue hypothermia during the early reperfusion period may provide a protective effect against ischemia-reperfusion injury similar to that seen when hypothermia is provided during the ischemic period. A rat gracilis muscle flap model was used to assess the protective effects of exposing skeletal muscle to local hypothermia during ischemia only (p = 18), reperfusion only (p = 18), and both ischemia and reperfusion (p = 18). Gracilis muscles were isolated and exposed to hypothermia of 10 degrees C during 4 hours of ischemia, the initial 3 hours of reperfusion, or both periods. Ischemia-reperfusion outcome measures used to evaluate muscle flap injury included muscle viability (percent nitroblue tetrazolium staining), local edema (wet-to-dry weight ratio), neutrophil infiltration (intramuscular neutrophil density per high-power field), neutrophil integrin expression (CD11b mean fluorescence intensity), and neutrophil oxidative potential (dihydro-rhodamine oxidation mean fluorescence intensity) after 24 hours of reperfusion. Nitroblue tetrazolium staining demonstrated improved muscle viability in the experimental groups (ischemia-only: 78.8 +/- 3.5 percent, p < 0.001; reperfusion-only: 80.2 +/- 5.2 percent, p < 0.001; and ischemia-reperfusion: 79.6 +/- 7.6 percent, p < 0.001) when compared with the nonhypothermic control group (50.7 +/- 9.3 percent). The experimental groups demonstrated decreased local muscle edema (4.09 +/- 0.30, 4.10 +/- 0.19, and 4.04 +/- 0.31 wet-to-dry weight ratios, respectively) when compared with the nonhypothermic control group (5.24 +/- 0.31 wet-to-dry weight ratio; p < 0.001, p < 0.001, and p < 0.001, respectively). CD11b expression was significantly decreased in the reperfusion-only (32.65 +/- 8.75 mean fluorescence intensity, p < 0.001) and ischemia-reperfusion groups (25.26 +/- 5.32, p < 0.001) compared with the nonhypothermic control group (62.69 +/- 16.93). There was not a significant decrease in neutrophil CD11b expression in the ischemia-only group (50.72 +/- 11.7 mean fluorescence intensity, p = 0.281). Neutrophil infiltration was significantly decreased in the reperfusion-only (20 +/- 11 counts per high-power field, p = 0.025) and ischemia-reperfusion groups (23 +/- 3 counts, p = 0.041) compared with the nonhypothermic control group (51 +/- 28 counts). No decrease in neutrophil density was observed in the ischemia-only group (40 +/- 15 counts per high-power field, p = 0.672) when compared with the nonhypothermic control group (51 +/- 28 counts). Finally, dihydrorhodamine oxidation was significantly decreased in the reperfusion-only group (45.83 +/- 11.89 mean fluorescence intensity, p = 0.021) and ischemia-reperfusion group (44.30 +/- 11.80, p = 0.018) when compared with the nonhypothermic control group (71.74 +/- 20.83), whereas no decrease in dihydrorhodamine oxidation was observed in the ischemia-only group (65.93 +/- 10.3, p = 0.982). The findings suggest a protective effect of local hypothermia during early reperfusion to skeletal muscle after an ischemic insult. Inhibition of CD11b expression and subsequent neutrophil infiltration and depression of neutrophil oxidative potential may represent independent protective mechanisms isolated to local tissue hypothermia during the early reperfusion period (reperfusion-only and ischemia-reperfusion groups). This study provides evidence for the potential clinical utility of administering local hypothermia to ischemic muscle tissue during the early reperfusion period.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号