首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   1篇
  2018年   2篇
  2017年   1篇
  2015年   1篇
  2013年   1篇
  2012年   2篇
  2010年   1篇
  2009年   1篇
  2008年   3篇
  2006年   1篇
  2005年   1篇
  2002年   5篇
  2000年   1篇
  1993年   1篇
  1985年   1篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有26条查询结果,搜索用时 218 毫秒
1.
Integrin-mediated interactions with collagen IV and its domains were examined in a human neuroblastoma cell line (SK-N-SH). By adhesion assays we demonstrated that neuroblastoma cells bound to solid-phase intact collagen IV and synthetic cell-binding peptide HEP-III, derived from the collagenous part of the molecule, but not to the main noncollagenous NC1 domain or to the synthetic cell-binding peptide HEP-I, derived from this domain. Monoclonal antibodies against β1, α3, and αvβ3 integrins resulted in inhibition of cell binding to collagenous substrates by 95, 30, and 35%, respectively. By flow cytometry and immunoblotting it was shown that culture of SK-N-SH cells on collagen IV resulted in alteration in the expression of major neuroblastoma cell integrins. Binding to collagen IV induced the expression and activation of matrix metalloproteinases A and B (MMP-2, MMP-9), with a concomitant increase at the protein level of tissue-specific inhibitors of metalloproteinases (TIMP-1, TIMP-2). Finally, the expression of MMP-2 was significantly up-regulated by anti-α3β1 antibodies, whereas ligation of anti-αvβ3 antibodies resulted in a modest down-regulation of MMP-2. Our results indicate that the presence of collagen IV modulates the expression of integrins, which are used for binding to this glycoprotein, and MMP-2 secreted by SK-N-SH cells.  相似文献   
2.
Summary We present approximately 7.0 kb of composite DNA sequence of a long interspersed middle repetitive element (LINE1) present in high copy number in the rat genome. The family of these repeats, which includes transcribing members, is the rat homologue of the mouse MIF-Bam-R and human Kpn I LINEs. Sequence alignments between speciments from these three species define the length of a putative unidentified open reading frame, and document extensive recombination events that, in conjunction with retroposition, have generated this large family of pseudogenes and pseudogene fragments. Comparative mapping of truncated elements indicates that a specific endonucleolytic activity might bei involved in illegitimate (nonhomologous) recombination events. Sequence divergence analyses provide insights into the origin and molecular evolution of these elements.  相似文献   
3.

Background

We aimed to clarify the emerging epigenetic landscape in a group of genes classified as “modifier genes” of the β-type globin genes (HBB cluster), known to operate in trans to accomplish the two natural developmental switches in globin expression, from embryonic to fetal during the first trimester of conception and from fetal to adult around the time of birth. The epigenetic alterations were determined in adult sickle cell anemia (SCA) homozygotes and SCA/β-thalassemia compound heterozygotes of Greek origin, who are under hydroxyurea (HU) treatment. Patients were distinguished in HU responders and HU non-responders (those not benefited from the HU) and both, and in vivo and in vitro approaches were implemented.

Results

We examined the CpG islands’ DNA methylation profile of BCL11A, KLF1, MYB, MAP3K5, SIN3A, ZBTB7A, and GATA2, along with γ-globin and LRF/ZBTB7A expression levels. In vitro treatment of hematopoietic stem cells (HSCs) with HU induced a significant DNA hypomethylation pattern in ZBTB7A (p*, 0.04) and GATA2 (p*, 0.03) CpGs exclusively in the HU non-responders. Also, this group of patients exhibited significantly elevated baseline methylation patterns in ZBTB7A, before the HU treatment, compared to HU responders (p*, 0.019) and to control group of healthy individuals (p*, 0.021), which resembles a potential epigenetic barrier for the γ-globin expression. γ-Globin expression in vitro matched with detected HbF levels during patients’ monitoring tests (in vivo) under HU treatment, implying a good reproducibility of the in vitro HU epigenetic effect. LRF/ZBTB7A expression was elevated only in the HU non-responders under the influence of HU.

Conclusions

This is one of the very first pharmacoepigenomic studies indicating that the hypomethylation of ZBTB7A during HU treatment enhances the LRF expression, which by its turn suppresses the HbF resumption in the HU non-responders. Its role as an epigenetic regulator of hemoglobin switching is also supported by the wide distribution of ZBTB7A-binding sites within the 5′ CpG sequences of all studied human HBB cluster “modifier genes.” Also, the baseline methylation level of selective CpGs in ZBTB7A and GATA2 could be an indicator of the negative HU response among the β-type hemoglobinopathy patients.
  相似文献   
4.
To examine the local actions of IGF signaling in skeletal tissue in a physiological context, we have used Cre-mediated recombination to disrupt selectively in mouse osteoblasts the gene encoding the type 1 IGF receptor (Igf1r). Mice carrying this bone-specific mutation were of normal size and weight but, in comparison with normal siblings, demonstrated a striking decrease in cancellous bone volume, connectivity, and trabecular number, and an increase in trabecular spacing. These abnormalities correlated with a striking decrease in the rate of mineralization of osteoid that occurred despite an unexpected osteoblast and osteoclast hyperactivity, detected from the significant increments in both osteoblast and erosion surfaces. Our findings indicate that IGF1 is essential for coupling matrix biosynthesis to sustained mineralization. This action is likely to be particularly important during the pubertal growth spurt when rapid bone formation and consolidation are required.  相似文献   
5.
The type 1 Simpson-Golabi-Behmel overgrowth syndrome (SGBS1) is caused by loss-of-function mutations of the X-linked GPC3 gene encoding glypican-3, a cell-surface heparan sulfate proteoglycan that apparently plays a negative role in growth control by an unknown mechanism. Mice carrying a Gpc3 gene knockout exhibited several phenotypic features that resemble clinical hallmarks of SGBS1, including somatic overgrowth, renal dysplasia, accessory spleens, polydactyly, and placentomegaly. In Gpc3/DeltaH19 double mutants (lacking GPC3 and also carrying a deletion around the H19 gene region that causes bialellic expression of the closely linked Igf2 gene by imprint relaxation), the Gpc3-null phenotype was exacerbated, while additional SGBS1 features (omphalocele and skeletal defects) were manifested. However, results from a detailed comparative analysis of growth patterns in double mutants lacking GPC3 and also IGF2, IGF1, or the type 1 IGF receptor (IGF1R) provided conclusive genetic evidence inconsistent with the hypothesis that GPC3 acts as a growth suppressor by sequestering or downregulating an IGF ligand. Nevertheless, our data are compatible with a model positing that there is downstream convergence of the independent signaling pathways in which either IGFs or (indirectly) GPC3 participate.  相似文献   
6.
7.
Studies of Drosophila and mammals have revealed the importance of insulin signaling through phosphatidylinositol 3-kinase and the serine/threonine kinase Akt/protein kinase B for the regulation of cell, organ, and organismal growth. In mammals, three highly conserved proteins, Akt1, Akt2, and Akt3, comprise the Akt family, of which the first two are required for normal growth and metabolism, respectively. Here we address the function of Akt3. Like Akt1, Akt3 is not required for the maintenance of normal carbohydrate metabolism but is essential for the attainment of normal organ size. However, in contrast to Akt1-/- mice, which display a proportional decrease in the sizes of all organs, Akt3-/- mice present a selective 20% decrease in brain size. Moreover, although Akt1- and Akt3-deficient brains are reduced in size to approximately the same degree, the absence of Akt1 leads to a reduction in cell number, whereas the lack of Akt3 results in smaller and fewer cells. Finally, mammalian target of rapamycin signaling is attenuated in the brains of Akt3-/- but not Akt1-/- mice, suggesting that differential regulation of this pathway contributes to an isoform-specific regulation of cell growth.  相似文献   
8.
Exercise scientists frequently use criterion measure tests to assess levels of motor performance and physical fitness or to evaluate the success of their intervention programs. During this process, the same motor test might be administered multiple times. The aim of the present study was to examine whether familiarization with a psychomotor test would influence performance and/or learning. One hundred thirty (n = 130) primary school students participated in the study. Participants were randomly divided into two groups, experimental (n = 60, mean age = 10.74 years old, minimum = 9.08, maximum = 11.83) and control (n = 70, mean age = 10.68 years old, minimum = 9.5, maximum = 11.79). The flamingo balance test was used to examine the postulated hypothesis. Initially, both groups executed the balance test. Then, only the experimental group performed two additional trials, one trial every 3 days. A final trial was administered to all participants, followed by a retention trial 1 week later. The results revealed that both groups improved their performance. The experimental group outperformed the control group. The retention trial showed that performance levels for both groups continued to improve, suggesting that familiarization with the test influenced not only performance but learning as well. Exercise scientists who implement psychomotor tests, such as balance tests, for evaluative purposes should be aware that performance improvement does not necessary represent changes in individuals' performance, but it may reflect individuals' familiarization with the test.  相似文献   
9.
Single strand conformation polymorphism (SSCP) is a reproducible, rapid and quite simple method for the detection of deletions/insertions/rearrangements in polymerase chain reaction amplified DNA. All the details for the use of PCR–SSCP are presented in the direction of genetic diseases (β-thalassaemia, cystic fibrosis), optimum gel conditions, sensitivity and the latest modifications of the method, which are applied in most laboratories. This non-radioactive PCR–SSCP method can be reliably used to identify mutations in patients (β-globin, CFTR), provided suitable controls are available. Moreover, it is widely used for mutation identification in carriers (β-thalassaemia, cystic fibrosis), making it particularly useful in population screening.  相似文献   
10.
In solid tumors, hypoxia (lack of oxygen) is developed, which leads to the development of resistance of tumor cells to chemotherapy and radiotherapy through various mechanisms. Nevertheless, hypoxic cells are particularly vulnerable when glycolysis is inhibited. For this reason, in this study, the development of magnetically targetable nanocarriers of the sodium-glucose transporter protein (SGLT2) inhibitor dapagliflozin (DAPA) was developed for the selective delivery of DAPA in tumors. This nanomedicine in combination with radiotherapy or chemotherapy should be useful for effective treatment of hypoxic tumors. The magnetic nanoparticles consisted of a magnetic iron oxide core and a poly(methacrylic acid)-graft-poly(ethyleneglycol methacrylate) (PMAA-g-PEGMA) polymeric shell. The drug (dapagliflozin) molecules were conjugated on the surface of these nanoparticles via in vivo hydrolysable ester bonds. The nanoparticles had an average size of ~ 70 nm and exhibited a DAPA loading capacity 10.75% (w/w) for a theoretical loading 21.68% (w/w). The magnetic responsiveness of the nanoparticles was confirmed with magnetophoresis experiments. The dapagliflozin-loaded magnetic nanoparticles exhibited excellent colloidal stability in aqueous and biological media. Minimal (less than 15% in 24 h) drug release from the nanoparticles occurred in physiological pH 7.4; however, drug release was significantly accelerated in pH 5.5. Drug release was also accelerated (triggered) under the influence of an alternating magnetic field. The DAPA-loaded nanoparticles exhibited higher in vitro anticancer activity (cytotoxicity) against A549 human lung cancer cells than free DAPA. The application of an external magnetic field gradient increased the uptake of nanoparticles by cells, leading to increased cytotoxicity. The results justify further in vivo studies of the suitability of DAPA-loaded magnetic nanoparticles for the treatment of hypoxic tumors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号