首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74篇
  免费   5篇
  2018年   1篇
  2016年   4篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2011年   2篇
  2010年   3篇
  2008年   2篇
  2007年   4篇
  2006年   6篇
  2005年   2篇
  2004年   6篇
  2003年   3篇
  2002年   3篇
  2000年   3篇
  1999年   3篇
  1998年   2篇
  1996年   2篇
  1995年   4篇
  1994年   2篇
  1993年   2篇
  1992年   3篇
  1991年   1篇
  1990年   3篇
  1989年   1篇
  1988年   2篇
  1983年   1篇
  1982年   1篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1969年   2篇
  1958年   1篇
  1956年   1篇
排序方式: 共有79条查询结果,搜索用时 15 毫秒
1.
2.
3.
Using the patch clamp technique, we have investigated the blockade of maxi-K+ channels present on vas deferens epithelial cells by extracellular Ba2+. With symmetrical 140 mM K+ solutions, Ba2+ produced discrete blocking events consisting of both long closings of seconds duration (slow block) and fast closings of milliseconds duration (flickering block). Kinetic analysis showed that flickering block occurred according to an "open channel blocking" scheme and was eliminated by reducing external K+ to 4.5 mM. Slow block showed a complex voltage-dependence. At potentials between -20 mV and 20 mV, blockade was voltage-dependent; at potentials greater than 20 mV, blockade was voltage-independent, but markedly sensitive to the extracellular K+ concentration. These data reveal that the vas deferens maxi-K+ channel has two Ba2+ binding sites accessible from the extracellular side. Site one is located at the cytoplasmic side of the gating region and binding to this site causes flickering block. Site two is located close to the extracellular mouth of the channel and binding to this site causes slow block.  相似文献   
4.
The vas deferens forms part of the male reproductive tract and extends from the cauda epididymis to the prostate. Using the patch clamp technique, we have identified a Ca2+-activated, voltage-dependent, maxi K+ channel on the apical membrane of epithelial cells cultured from human fetal vas deferens. The channel had a conductance of 250 pS in symmetrical 140 mm K+ solutions, and was highly selective for K+ over Na+. Channel activity was increased by depolarization and by an elevation of bath (cytoplasmic) Ca2+ concentration, and reduced by cytoplasmic Ba2+ (5 mm) but not by cytoplasmic TEA (10 mm). Channel activity was also dependent on the cation bathing the cytoplasmic face of the membrane, being higher in a Na+-rich compared to a K+-rich solution. We estimated that up to 600 maxi K+ channels were present on the apical membrane of a vas cell, and that their density was 1–2 per 2 of membrane. Activity of the channel was low on intact cells, suggesting that it does not contribute to a resting K+ conductance. However, fluid in the lumen of the human vas deferens has a high K+ concentration and we speculate that the maxi K+ channel could play a role in transepithelial K+ secretion.Funded by grants from the Cystic Fibrosis Trust and the Medical Research Council (UK). We thank Mr. David Stephenson for excellent technical assistance.  相似文献   
5.
Summary Pancreas of the cat was fractionated into its subcellular components by centrifugation through an exponential ficoll-sucrose density gradient in a zonal rotor. This enables a preparation of four fractions enriched in plasma membranes, endoplasmic reticulum, mitochondria and zymogen granules, respectively. The first fraction, enriched by 9- to 15-fold in the plasma membrane marker enzymes, hormone-stimulated adenylate cyclase, (Na+K+)-ATPase, and 5-nucleotidase, is contaminated by membranes derived from endoplasmic reticulum but is virtually free from mitochondrial and zymogen-granule contamination. The second fraction from the zonal gradient shows only moderate enrichment of the above marker enzymes but contains a considerable quantity of plasma membrane marker enzymes and represents mostly rough endoplasmic reticulum. The third fraction contains the bulk of mitochondria and the fourth mainly zymogen granules as assessed by electron microscopy and marker enzymes for both mitochondria and zymogen granules, namely succinic dehydrogenase, trypsin and amylase. Further purification of the plasma membrane fractions by differential and sucrose step-gradient centrifugation yields plasma membrane enriched 40-fold in basal and hormone-stimulated adenylate cyclase and (Na+K+)-ATPase.  相似文献   
6.
We have identified a non-selective cation channel on pancreatic duct cells. These epithelial cells secrete the bicarbonate ions found in pancreatic juice; a process controlled by the hormone secretin, which uses cyclic AMP as an intracellular messenger. The non-selective channel is located on both apical and basolateral plasma membranes of the duct cell, is equally permeable to sodium and potassium, and has a linear I/V relationship with a single-channel conductance of about 25 pS. Channel opening requires the presence of 1 microM Ca2+ on the cytoplasmic face of the membrane, and is also increased by depolarization. Intracellular ATP, ADP, magnesium, and a rise in pH all decreased channel activity. The channel was not affected by 10 mM TEA, 1 mM Ba2+ or 0.5 mM decamethonium applied to the cytoplasmic face of the membrane, but 0.5 mM quinine caused a flickering block which was more pronounced at depolarizing potentials. We observed the channel only rarely in cell-attached patches on unstimulated duct cells, and acute exposure to stimulants did not cause channel activation. However, after prolonged stimulation, the proportion of cell-attached patches containing active channels was increased 9-fold. The role of this channel in pancreatic duct cell function remains to be elucidated.  相似文献   
7.
Intracellular VacA localises to the vacuolar (late endosome/lysosome) membrane, but little is known about the trafficking of the toxin beyond this region. We show that the Golgi-disturbing agent brefeldin A (BFA) enhances VacA-induced vacuolation of epithelial cells by Helicobacter pylori co-culture and, importantly, BFA treatment induces vacuolation by less toxic forms of VacA. The effect is BFA dose-dependent and occurs within 2.5 h. These data suggest that VacA may be routed deeper within the cell than the vacuole, and that vacuolation is minimised when this occurs efficiently. This may explain why some forms of VacA do not cause vacuolation and why vacuolation is minimal at the low bacteria:cell ratios observed in vivo.  相似文献   
8.
Two Cl(-) conductances have been described in the apical membrane of both human and murine proximal airway epithelia that are thought to play predominant roles in airway hydration: (1) CFTR, which is cAMP regulated and (2) the Ca(2+)-activated Cl(-) conductance (CaCC) whose molecular identity is uncertain. In addition to second messenger regulation, cross talk between these two channels may also exist and, whereas CFTR is absent or defective in cystic fibrosis (CF) airways, CaCC is preserved, and may even be up-regulated. Increased CaCC activity in CF airways is controversial. Hence, we have investigated the effects of CFTR on CaCC activity and have also assessed the relative contributions of these two conductances to airway surface liquid (ASL) height (volume) in murine tracheal epithelia. We find that CaCC is up-regulated in intact murine CF tracheal epithelia, which leads to an increase in UTP-mediated Cl(-)/volume secretion. This up-regulation is dependent on cell polarity and is lost in nonpolarized epithelia. We find no role for an increased electrical driving force in CaCC up-regulation but do find an increased Ca(2+) signal in response to mucosal nucleotides that may contribute to the increased Cl(-)/volume secretion seen in intact epithelia. CFTR plays a critical role in maintaining ASL height under basal conditions and accordingly, ASL height is reduced in CF epithelia. In contrast, CaCC does not appear to significantly affect basal ASL height, but does appear to be important in regulating ASL height in response to released agonists (e.g., mucosal nucleotides). We conclude that both CaCC and the Ca(2+) signal are increased in CF airway epithelia, and that they contribute to acute but not basal regulation of ASL height.  相似文献   
9.
We have used computer modeling to investigate how pancreatic duct cells can secrete a fluid containing near isotonic (∼140 mm) NaHCO3. Experimental data suggest that NaHCO3 secretion occurs in three steps: (i) accumulation of HCO 3 across the basolateral membrane of the duct cell by Na(HCO3) n cotransporters, Na+/H+ exchangers and proton pumps; (ii) secretion of HCO 3 across the luminal membrane on Cl/HCO 3 antiporters operating in parallel with Cl channels; and (iii) diffusion of Na+ through the paracellular pathway. Programming the currently available experimental data into our computer model shows that this mechanism for HCO 3 secretion is deficient in one important respect. While it can produce a relatively large volume of a HCO 3-rich fluid, it can only raise the luminal HCO 3 concentration up to about 70 mm. To achieve secretion of 140 mm NaHCO3 by the model it is necessary to: (i) reduce the conductive Cl permeability and increase the conductive HCO 3 permeability of the luminal membrane of the duct cell, and (ii) reduce the activity of the luminal Cl/HCO 3 antiporters. Under these conditions most of the HCO 3 is secreted via a conductive pathway. Based on our data, we propose that HCO 3 secretion occurs mainly by the antiporter in duct segments near the acini (luminal HCO 3 concentration up to ∼70 mm), but mainly via channels further down the ductal tree (raising luminal HCO 3 to ∼140 mm). Received: 15 November 1999/Revised: 29 March 2000  相似文献   
10.

Background  

Sustained stimulation with tumour necrosis factor alpha (TNF-alpha) induces substantial oscillations—observed at both the single cell and population levels—in the nuclear factor kappa B (NF-kappa B) system. Although the mechanism has not yet been elucidated fully, a core system has been identified consisting of a negative feedback loop involving NF-kappa B (RelA:p50 hetero-dimer) and its inhibitor I-kappa B-alpha. Many authors have suggested that this core oscillator should couple to other oscillatory pathways.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号