首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   4篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2013年   2篇
  2012年   1篇
  2003年   1篇
  1990年   1篇
排序方式: 共有10条查询结果,搜索用时 31 毫秒
1
1.
Regular exercise is positively associated with health. It has also been suggested to exert anti-inflammatory effects. In healthy subjects, a single exercise session results in immune cell activation, which is characterized by production of immune modulatory peptides (e.g. IL-6, IL-8), a leukocytosis and enhanced immune cell functions. Upon cessation of exercise, immune activation is followed by a tolerizing phase, characterized by a reduced responsiveness of immune cells. Regular exercise of moderate intensity and duration has been shown to exert anti-inflammatory effects and is associated with a reduced disease incidence and viral infection susceptibility. Specific exercise programs may therefore be used to modify the course of chronic inflammatory and infectious diseases such as cystic fibrosis (CF).Patients with CF suffer from severe and chronic pulmonary infections and inflammation, leading to obstructive and restrictive pulmonary disease, exercise intolerance and muscle cachexia. Inflammation is characterized by a hyper-inflammatory phenotype. Patients are encouraged to engage in exercise programs to maintain physical fitness, quality of life, pulmonary function and health.In this review, we present an overview of available literature describing the association between regular exercise, inflammation and infection susceptibility and discuss the implications of these observations for prevention and treatment of inflammation and infection susceptibility in patients with CF.  相似文献   
2.
3.
4.
Impacts of climate change require that society urgently develops ways to reduce amounts of carbon in the atmosphere. Tropical forests present an important opportunity, as they take up and store large amounts of carbon. It is often suggested that forests with high biodiversity have large stocks and high rates of carbon uptake. Evidence is, however, scattered across geographic areas and scales, and it remains unclear whether biodiversity is just a co‐benefit or also a requirement for the maintenance of carbon stocks and uptake. Here, we perform a quantitative review of empirical studies that analyzed the relationships between plant biodiversity attributes and carbon stocks and carbon uptake in tropical forests. Our results show that biodiversity attributes related to species, traits or structure significantly affect carbon stocks or uptake in 64% of the evaluated relationships. Average vegetation attributes (community‐mean traits and structural attributes) are more important for carbon stocks, whereas variability in vegetation attributes (i.e., taxonomic diversity) is important for both carbon stocks and uptake. Thus, different attributes of biodiversity have complementary effects on carbon stocks and uptake. These biodiversity effects tend to be more often significant in mature forests at broad spatial scales than in disturbed forests at local spatial scales. Biodiversity effects are also more often significant when confounding variables are not included in the analyses, highlighting the importance of performing a comprehensive analysis that adequately accounts for environmental drivers. In summary, biodiversity is not only a co‐benefit, but also a requirement for short‐ and long‐term maintenance of carbon stocks and enhancement of uptake. Climate change policies should therefore include the maintenance of multiple attributes of biodiversity as an essential requirement to achieve long‐term climate change mitigation goals.  相似文献   
5.
6.
Regular moderate exercise has been suggested to exert anti-inflammatory effects and improve immune effector functions, resulting in reduced disease incidence and viral infection susceptibility. Whether regular exercise also affects bacterial infection susceptibility is unknown. The aim of this study was to investigate whether regular voluntary exercise wheel running prior to a pulmonary infection with bacteria (P. aeruginosa) affects lung bacteriology, sickness severity and phagocyte immune function in mice. Balb/c mice were randomly placed in a cage with or without a running wheel. After 28 days, mice were intranasally infected with P. aeruginosa. Our study showed that regular exercise resulted in a higher sickness severity score and bacterial (P. aeruginosa) loads in the lungs. The phagocytic capacity of monocytes and neutrophils from spleen and lungs was not affected. Although regular moderate exercise has many health benefits, healthy mice showed increased bacterial (P. aeruginosa) load and symptoms, after regular voluntary exercise, with perseverance of the phagocytic capacity of monocytes and neutrophils. Whether patients, suffering from bacterial infectious diseases, should be encouraged to engage in exercise and physical activities with caution requires further research.  相似文献   
7.
To explore genetic effects on the expression of chromosomal fragile sites in vitro, we studied the expression of common fragile sites (c-fra) in cultured lymphocytes of a human chimera (Chi46,XX/46,XY). Since the two cell lines in the chimera share the same environment in vitro and in vivo on cell culture preceding chromosome analysis, differences in the expression of c-fra must be due to genetic factors. The peripheral lymphocytes were cultured in medium 199 and in medium RPMI 1640 with and without aphidicolin. All lesions were localized after GTG-banding and mapped to the human idiogram. In the cultures with aphidicolin the XX cells showed, at high (0.4 microM) APC levels, a significantly higher expression of c-fra than did the XY cells. This difference between cell lineages was not confined to certain individual c-fra; rather it was seen for practically all of them. Therefore, we conclude that there are genetic factors which influence the propensity of c-fra to be expressed. Whether sex is one of these factors, or perhaps even the most important one, still has to be elucidated.  相似文献   
8.
Forest degradation accounts for ~70% of total carbon losses from tropical forests. Substantial emissions are from selective logging, a land‐use activity that decreases forest carbon density. To maintain carbon values in selectively logged forests, climate change mitigation policies and government agencies promote the adoption of reduced‐impact logging (RIL) practices. However, whether RIL will maintain both carbon and timber values in managed tropical forests over time remains uncertain. In this study, we quantify the recovery of timber stocks and aboveground carbon at an experimental site where forests were subjected to different intensities of RIL (4, 8, and 16 trees/ha). Our census data span 20 years postlogging and 17 years after the liberation of future crop trees from competition in a tropical forest on the Guiana Shield, a globally important forest carbon reservoir. We model recovery of timber and carbon with a breakpoint regression that allowed us to capture elevated tree mortality immediately after logging. Recovery rates of timber and carbon were governed by the presence of residual trees (i.e., trees that persisted through the first harvest). The liberation treatment stimulated faster recovery of timber albeit at a carbon cost. Model results suggest a threshold logging intensity beyond which forests managed for timber and carbon derive few benefits from RIL, with recruitment and residual growth not sufficient to offset losses. Inclusion of the breakpoint at which carbon and timber gains outpaced postlogging mortality led to high predictive accuracy, including out‐of‐sample R2 values >90%, and enabled inference on demographic changes postlogging. Our modeling framework is broadly applicable to studies that aim to quantify impacts of logging on forest recovery. Overall, we demonstrate that initial mortality drives variation in recovery rates, that the second harvest depends on old growth wood, and that timber intensification lowers carbon stocks.  相似文献   
9.
Poorter  Lourens  Arets  Eric J.M.M. 《Plant Ecology》2003,166(2):295-306
Light partitioning is thought to contribute to the coexistence of rain forest tree species. This study evaluates the three premises underlying the light partitioning hypothesis; 1) there is a gradient in light availability at the forest floor, 2) tree species show a differential distribution with respect to light, and 3) there is a trade-off in species performance that explains their different positions along the light gradient. To address these premises, we studied the light environment, growth, and survival of saplings of ten non-pioneer tree species in a Bolivian moist forest. Light availability in the understorey was relatively high, with a mean canopy openness of 3.5% and a mean direct site factor of 6.8%. Saplings of two light demanding species occurred at significantly higher light levels than the shade tolerant species. The proportion of saplings in low-light conditions was negatively correlated with the successional position of the species. Light-demanding species were characterised by a low share of their saplings in low-light conditions, a high sapling mortality, a fast height growth and a strong growth response to light. These data show that all three premises for light partitioning are met. There is a clear gradient in shade-tolerance within the group of non-pioneer species leading to a tight packing of species along the small range of light environments found in the understorey. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
10.

Aim

Tropical forests account for a quarter of the global carbon storage and a third of the terrestrial productivity. Few studies have teased apart the relative importance of environmental factors and forest attributes for ecosystem functioning, especially for the tropics. This study aims to relate aboveground biomass (AGB) and biomass dynamics (i.e., net biomass productivity and its underlying demographic drivers: biomass recruitment, growth and mortality) to forest attributes (tree diversity, community‐mean traits and stand basal area) and environmental conditions (water availability, soil fertility and disturbance).

Location

Neotropics.

Methods

We used data from 26 sites, 201 1‐ha plots and >92,000 trees distributed across the Neotropics. We quantified for each site water availability and soil total exchangeable bases and for each plot three key community‐weighted mean functional traits that are important for biomass stocks and productivity. We used structural equation models to test the hypothesis that all drivers have independent, positive effects on biomass stocks and dynamics.

Results

Of the relationships analysed, vegetation attributes were more frequently associated significantly with biomass stocks and dynamics than environmental conditions (in 67 vs. 33% of the relationships). High climatic water availability increased biomass growth and stocks, light disturbance increased biomass growth, and soil bases had no effect. Rarefied tree species richness had consistent positive relationships with biomass stocks and dynamics, probably because of niche complementarity, but was not related to net biomass productivity. Community‐mean traits were good predictors of biomass stocks and dynamics.

Main conclusions

Water availability has a strong positive effect on biomass stocks and growth, and a future predicted increase in (atmospheric) drought might, therefore, potentially reduce carbon storage. Forest attributes, including species diversity and community‐weighted mean traits, have independent and important relationships with AGB stocks, dynamics and ecosystem functioning, not only in relatively simple temperate systems, but also in structurally complex hyper‐diverse tropical forests.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号