首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  2012年   1篇
  2010年   1篇
  2003年   2篇
  2000年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
It was shown that phytoplankton from the Varna Bay, Black Sea, has significantly more suspended carbohydrates, proteins and biomass in July than in April. The dominant species were Bacillariophyceae and Dinophyceae. Electrophoretic and fluorescent spectra have shown the main differences in molecular weight and stability of phytoplankton proteins. Phytoplankton included specific proteins distributed over a limited range of molecular weights between 14 and 72 kilodaltons (kDa). The most abundant protein constituents in phytoplankton samples collected in April were around 45–55 kDa. The seasonal variations of the environment influence the quantitative and qualitative changes in phytoplankton.  相似文献   
2.
Diatoms and related algae have plastids that are surrounded by four membranes. The outer two membranes are continuous with the endoplasmic reticulum and the inner two membranes are analogous to the plastid envelope membranes of higher plants and green algae. Thus the plastids are completely compartmentalized within the ER membranes. The targeting presequences for nuclear-encoded plastid proteins have two recognizable domains. The first domain is a classic signal sequence, which presumably targets the proteins to the endoplasmic reticulum. The second domain has characteristics of a transit peptide, which targets proteins to the plastids of higher plants. To characterize these targeting domains, the presequence from the nuclear-encoded plastid protein AtpC was utilized. A series of deletions of this presequence were fused to Green Fluorescent Protein (GFP) and transformed into cells of the diatom, Phaeodactylum tricornutum. The intracelluar localization of GFP was visualized by fluorescence microscopy. This work demonstrates that the first domain of the presequence is responsible for targeting proteins to the ER lumen and is the essential first step in the plastid protein import process. The second domain is responsible to directing proteins from the ER and through the plastid envelope and only a short portion of the transit peptide-like domain is necessary to complete this second processing step. In vivo data generated from this study in a fully homologous transformation system has confirmed Gibbs' hypothesis regarding a multistep import process for plastid proteins in chromophytic algae.  相似文献   
3.
Pleurotus ostreatus strains were cultured in liquid medium and on wheat straw. The yields of lovastatin were compared.  相似文献   
4.
? Premise of the study: The streptophyte water-to-land transition was a pivotal, but poorly understood event in Earth history. While some early-diverging modern streptophyte algae are aeroterrestrial (living in subaerial habitats), aeroterrestrial survival had not been tested for Coleochaete, widely regarded as obligately aquatic and one of the extant green algal genera most closely related to embryophytes. This relationship motivated a comparison of aeroterrestrial Coleochaete to lower Paleozoic microfossils whose relationships have been uncertain. ? Methods: We tested the ability of two species of the experimentally tractable, complex streptophyte algal genus Coleochaete Bréb. to (1) grow and reproduce when cultivated under conditions that mimic humid subaerial habitats, (2) survive desiccation for some period of time, and (3) produce degradation-resistant remains comparable to enigmatic Cambrian microfossils. ? Key results: When grown on mineral agar media or on quartz sand, both species displayed bodies structurally distinct from those expressed in aquatic habitats. Aeroterrestrial Coleochaete occurred as hairless, multistratose, hemispherical bodies having unistratose lobes or irregular clusters of cells with thick, layered, and chemically resistant walls that resemble certain enigmatic lower Paleozoic microfossils. Whether grown under humid conditions or air-dried for a week, then exposed to liquid water, aeroterrestrial Coleochaete produced typical asexual zoospores and germlings. Cells that had been air-dried for periods up to several months maintained their integrity and green pigmentation. ? Conclusions: Features of modern aeroterrestrial Coleochaete suggest that ancient complex streptophyte algae could grow and reproduce in moist subaerial habitats, persist through periods of desiccation, and leave behind distinctive microfossil remains.  相似文献   
5.
? Premise of the study: The goal of this study was to illuminate the evolutionary history and ecological importance of plant mixotrophy-the uptake and utilization of exogenous organic compounds. ? Methods: We quantitatively assessed the effect of sugar amendments on laboratory growth of Sphagnum compactum as a representative emergent peat moss and two species of ecologically associated zygnematalean algae, Cylindrocystis brebissonii and Mougeotia sp. ? Key results: Together with observations published elsewhere, our results suggest that under carbon or light limitation, the uptake of exogenous sugars by cells of charophycean algae and peat mosses may help these organisms maintain positive carbon balance. Utilization of 1% glucose by aquatic-grown algae helped to relieve dissolved inorganic carbon limitation, enhancing photoautotrophic growth by factors of 9.0 and 1.7, respectively. After an 8-wk growth period, amendments of 1% and 2% glucose enhanced air-grown moss biomass by 28 and 39 times, respectively, that of controls lacking sugar amendments. After 9 wk, 1% fructose enhanced biomass by 21 times, and 2% sucrose enhanced biomass by 31 times. ? Conclusion: Our results indicate that plant mixotrophy is an early-evolved trait. The results also indicate that quantitative differences in sugar utilization by bryophytes and charophycean algae correlate with relative investments in protective cell-wall polyphenolics measured in previous studies, suggesting that sugar utilization may subsidize the cost of producing phenolic wall compounds in bryophytes.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号