首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   120篇
  免费   6篇
  126篇
  2022年   2篇
  2021年   3篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   6篇
  2014年   4篇
  2013年   8篇
  2012年   10篇
  2011年   9篇
  2010年   13篇
  2009年   2篇
  2008年   6篇
  2007年   2篇
  2006年   1篇
  2005年   3篇
  2004年   2篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1994年   1篇
  1993年   1篇
  1991年   2篇
  1990年   3篇
  1989年   3篇
  1988年   4篇
  1987年   2篇
  1985年   5篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1975年   1篇
  1973年   3篇
  1972年   3篇
  1971年   2篇
  1968年   1篇
  1952年   1篇
  1925年   1篇
排序方式: 共有126条查询结果,搜索用时 15 毫秒
1.
    
Legumes form a symbiotic interaction with Rhizobiaceae bacteria, which differentiate into nitrogen‐fixing bacteroids within nodules. Here, we investigated in vivo the pH of the peribacteroid space (PBS) surrounding the bacteroid and pH variation throughout symbiosis. In vivo confocal microscopy investigations, using acidotropic probes, demonstrated the acidic state of the PBS. In planta analysis of nodule senescence induced by distinct biological processes drastically increased PBS pH in the N2‐fixing zone (zone III). Therefore, the PBS acidification observed in mature bacteroids can be considered as a marker of bacteroid N2 fixation. Using a pH‐sensitive ratiometric probe, PBS pH was measured in vivo during the whole symbiotic process. We showed a progressive acidification of the PBS from the bacteroid release up to the onset of N2 fixation. Genetic and pharmacological approaches were conducted and led to disruption of the PBS acidification. Altogether, our findings shed light on the role of PBS pH of mature bacteroids in nodule functioning, providing new tools to monitor in vivo bacteroid physiology.  相似文献   
2.
In non-mammalian vertebrates, the pineal gland is photoreceptive and contains an intrinsic circadian oscillator that drives rhythmic production and secretion of melatonin. These features require an accurate spatiotemporal expression of an array of specific genes in the pineal gland. Among these is the arylalkylamine N-acetyltransferase, a key enzyme in the melatonin production pathway. In zebrafish, pineal specificity of zfaanat2 is determined by a region designated the pineal-restrictive downstream module (PRDM), which contains three photoreceptor conserved elements (PCEs) and an E-box, elements that are generally associated with photoreceptor-specific and rhythmic expression, respectively. Here, by using in vivo and in vitro approaches, it was found that the PCEs and E-box of the PRDM mediate a synergistic effect of the photoreceptor-specific homeobox OTX5 and rhythmically expressed clock protein heterodimer, BMAL/CLOCK, on zfaanat2 expression. Furthermore, the distance between the PCEs and the E-box was found to be critical for PRDM function, suggesting a possible physical feature of this synergistic interaction. OTX5-BMAL/CLOCK may act through this mechanism to simultaneously control pineal-specific and rhythmic expression of zfaanat2 and possibly also other pineal and retinal genes.  相似文献   
3.

Background  

Staphylococcus aureus expresses several proteases, which are thought to contribute to the virulence of this bacterium. Here we focus on aureolysin, the major thermolysin-like metalloprotease. Despite the importance of aureolysin in the physiology and pathogenesis of S. aureus, relatively little information was so far available concerning the aur gene diversity and mobility within and between the major subdivisions of the S. aureus population. Therefore, an epidemiologically and genetically diverse collection of S. aureus strains was used to determine the range of aureolysin (aur) gene polymorphism.  相似文献   
4.
5.
6.
Single-cell network profiling (SCNP) data generated from multi-parametric flow cytometry analysis of bone marrow (BM) and peripheral blood (PB) samples collected from patients >55 years old with non-M3 AML were used to train and validate a diagnostic classifier (DXSCNP) for predicting response to standard induction chemotherapy (complete response [CR] or CR with incomplete hematologic recovery [CRi] versus resistant disease [RD]). SCNP-evaluable patients from four SWOG AML trials were randomized between Training (N = 74 patients with CR, CRi or RD; BM set = 43; PB set = 57) and Validation Analysis Sets (N = 71; BM set = 42, PB set = 53). Cell survival, differentiation, and apoptosis pathway signaling were used as potential inputs for DXSCNP. Five DXSCNP classifiers were developed on the SWOG Training set and tested for prediction accuracy in an independent BM verification sample set (N = 24) from ECOG AML trials to select the final classifier, which was a significant predictor of CR/CRi (area under the receiver operating characteristic curve AUROC = 0.76, p = 0.01). The selected classifier was then validated in the SWOG BM Validation Set (AUROC = 0.72, p = 0.02). Importantly, a classifier developed using only clinical and molecular inputs from the same sample set (DXCLINICAL2) lacked prediction accuracy: AUROC = 0.61 (p = 0.18) in the BM Verification Set and 0.53 (p = 0.38) in the BM Validation Set. Notably, the DXSCNP classifier was still significant in predicting response in the BM Validation Analysis Set after controlling for DXCLINICAL2 (p = 0.03), showing that DXSCNP provides information that is independent from that provided by currently used prognostic markers. Taken together, these data show that the proteomic classifier may provide prognostic information relevant to treatment planning beyond genetic mutations and traditional prognostic factors in elderly AML.  相似文献   
7.
Checkpoint alterations that impact cell cycle and apoptosis responses to therapeutic treatments may produce drug resistance in acute myeloid leukemia (AML). To study these, we have developed flow cytometry assays of checkpoint function that also allow quantitation of key molecular regulators of apoptosis and cell cycle. We have used three-color (3C) assays, with FITC-labeled anti-BCL-2 and PE-labeled anti-proliferating cell nuclear antigen (PCNA) antibodies, and the DNA dye 7-aminoactinomycin, to characterize primary leukemia cells identified in DNA x side light scatter (SSC) histograms. We showed that 3C assays are accurate and reproducible in analyses of leukemia cell lines and of primary AML and normal bone marrow samples (Banker et al.: Blood 89: 243-255, 1997; Banker et al.: Leukemia Res 22: 221-239, 1998; Banker et al.: Clin Cancer Res 4: 3051-3062, 1998). To further confirm the validity of our SSC leukemia cell gating and to address whether immunophenotypic AML subsets might have different biologic properties, we have now designed four-color (4C) flow assays to characterize checkpoint status in leukemic blasts specifically identified by surface immunostaining. In modeling this assay strategy, PE/Cy5-labeled anti-CD34 antibody was used to detect blasts, with FITC-labeled anti-BCL-2, PE-labeled anti-PCNA antibodies, and Hoechst 33342 (H33342) DNA dye. Four-color CD34-gated data was concordant with 3C, SSC-gated data for leukemia cell lines and for most primary AML samples with high and intermediate blast counts. BCL-2 and PCNA immunopositivity and sub-G1 apoptosis determinations were different in the CD34-gated versus SSC-gated blasts in particular samples with smaller CD34(+) subsets, suggesting that leukemia samples can contain blast subsets with different biologic properties. On the other hand, PCNA-gated cell-cycle distributions in untreated cells and G1 versus S phase cell-cycle arrests after cytosine arabinoside treatments were completely concordant in 4C and 3C assays. We conclude that both 3C and 4C assays can be used to characterize protein expression and cell-cycle drug response patterns in leukemia blasts, but that 4C assays may additionally allow discrimination of these properties in immunophenotypic leukemia subsets.  相似文献   
8.
9.
10.
    
Although Ensifera is a major insect model group, its phylogenetic relationships have been understudied so far. Few phylogenetic hypotheses have been proposed, either with morphological or molecular data. The largest dataset ever used for phylogeny reconstruction on this group is molecular (16S rRNA, 18S rRNA and 28S rRNA sequences for 51 ensiferan species), which has been used twice with different resultant topologies. However, only one of these hypotheses has been adopted commonly as a reference classification. Here we re‐analyse this molecular dataset with different methods and parameters to test the robustness and the stability of the adopted phylogeny. Our study reveals the instability of phylogenetic relationships derived from this dataset, especially for the deepest nodes of the group, and suggests some guidelines for future studies. The comparison between the different classifications proposed in the past 70 years for Ensifera and our results allows the identification of potential monophyletic clades (katydids, mole crickets, scaly crickets + Malgasia, true crickets, leaf roller crickets, cave crickets) and the remaining unresolved clades (wetas, Jerusalem crickets and most of the highest rank clades) in Ensifera phylogeny.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号