首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   1篇
  2022年   1篇
  2018年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2011年   1篇
  2002年   1篇
  1981年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
The anatomical localization of caffeine within young Camellia sinensis leaves was investigated using immunohistochemical methods and confocal scanning laser microscopy. Preliminary fixation experiments were conducted with young C. sinensis leaves to determine which fixation procedure retained caffeine the best as determined by high-performance liquid chromatography analysis. High pressure freezing, freeze substitution, and embedding in resin was deemed the best protocol as it retained most of the caffeine and allowed for the samples to be sectioned with ease. Immunohistochemical localization with primary anti-caffeine antibodies and conjugated secondary antibodies on leaf sections proved at the tissue level that caffeine was localized and accumulated within vascular bundles, mainly the precursor phloem. With the use of a pressure bomb, xylem sap was collected using a micro syringe. The xylem sap was analyzed by thin-layer chromatography and the presence of caffeine was determined. We hypothesize that caffeine is synthesized in the chloroplasts of photosynthetic cells and transported to vascular bundles where it acts as a chemical defense against various pathogens and predators. Complex formation of caffeine with chlorogenic acid is also discussed as this may also help explain caffeine’s localization.  相似文献   
2.
3.
Journal of Plant Biochemistry and Biotechnology - Tea (Camellia sinensis) has enthralled both consumers and researchers, due to its taste, aroma and its medicinal attributes. Tea consumers concern...  相似文献   
4.
5.
The essential oils (EOs) isolated from the fresh aerial parts of Ruta chalepensis L. collected in North Lebanon were obtained by solvent‐free microwave extraction (Milestone®), yielding 0.12% EO from both the leaves and a mixture of stems and leaves. The EOs were characterized by GC/MS analysis, and 27 components were identified, which were primarily ketones (88.0–93.2%). The main components were nonan‐2‐one and undecan‐2‐one. The antimicrobial activity of the EOs against a Gram‐positive and a Gram‐negative bacterium, a yeast, and a dermatophyte was evaluated using the broth‐microdilution technique and expressed as minimal inhibitory concentration (MIC). The EOs revealed moderate in vitro antifungal activity against Trichophyton rubrum and Candida albicans.  相似文献   
6.
The principal pigments present in black tea, theaflavins (TF), have been indicated to be of potential clinical significance in various fields of research which has been hampered by the very low levels of TFs from black tea extractions, being the original method employed to acquire TFs. Forelle pear (44?µM TF/g dry weight/h) and Yacon leaf (65?µM TF/g dry weight/h) homogenates were tested for their TF synthesis capacity and found to have a larger TF synthesis capacity than a green tea leaf homogenate (26?µM TF/g dry weight/h) based upon the flavognost method. In an incubation system of green tea leaf extract utilizing endogenous enzymes present in Forelle pear and Yacon homogenates to synthesize TF, the formation of an unknown peak [m/z 563.1349; (23.95)5; C26H28O14] was detected by mass spectrometry with a molecular mass similar to TF. This is in contrast to TF being solely synthesized in an in vitro model incubation system using isolated catechins and purified Forelle pear polyphenol oxidase. The preferential formation of the unknown compound could explain the low levels of TFs in black tea.  相似文献   
7.
Summary In this study the gas chromatographic method of Poly-β-hydroxy butyric acid determination of Braunegg et al. (1978), was optimised for activated sludge samples. The poly-β-hydroxy butyric acid was extracted and quantified gravimetrically to confirm the accuracy of the gas chromatographic method. The authenticity of the extracted material was confirmed by several methods. It was also confirmed that the mixed liquor of an activated sludge process did not interfere with the esterification. The sample size required was 25 ml of mix liquor, or 50 mg of freeze-dried sludge.  相似文献   
8.
Tea (Camellia sinensis) contains polyphenols and caffeine which have been found to be of popular interest in tea quality. Tea production relies on well-distributed rainfall which influence tea quality. Phenotypic data for two segregating tea populations TRFK St 504 and TRFK St 524 were collected and used to identify the quantitative trait loci (QTL) influencing tea biochemical and drought stress traits based on a consensus genetic map constructed using the DArTseq platform. The populations comprised 261 F1 clonal progeny. The map consisted of 15 linkage groups which corresponds to chromosome haploid number of tea plant (2n?=?2×?=?30) and spanned 1260.1 cM with a mean interval of 1.1 cM between markers. A total of 16 phenotypic traits were assessed in the two populations. Both interval and multiple QTL mapping revealed a total of 47 putative QTL in the 15 LGs associated with tea quality and percent relative water content at a significant genome-wide threshold of 5%. In total, six caffeine QTL, 25 catechins QTL, three theaflavins QTL, nine QTL for tea taster score, and three QTL for percent relative water contents were detected. Out of these 47 QTL, 19 QTL were identified for ten traits in three main regions on LG01, LG02, LG04, LG12, LG13, and LG14. The QTL associated with caffeine, individual catechins, and theaflavins were clustered mostly in LG02 and LG04 but in different regions on the map. The explained variance by each QTL in the population ranged from 5.5 to 56.6%, with an average of 9.9%. Identification of QTL that are tightly linked to markers associated with black tea quality coupled with UPLC assay may greatly accelerate development of novel tea cultivars owing to its amenability at seedling stage. In addition, validated molecular markers will contribute greatly to adoption of marker-assisted selection (MAS) for drought tolerance and tea quality improvement.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号