首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63篇
  免费   6篇
  2023年   2篇
  2019年   1篇
  2016年   3篇
  2015年   5篇
  2014年   5篇
  2013年   4篇
  2012年   12篇
  2011年   5篇
  2010年   4篇
  2008年   2篇
  2007年   1篇
  2006年   6篇
  2005年   1篇
  2004年   4篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1993年   1篇
  1992年   1篇
  1979年   1篇
  1975年   1篇
  1968年   1篇
  1941年   1篇
  1939年   1篇
排序方式: 共有69条查询结果,搜索用时 15 毫秒
1.
The structure of tetra-O-methyl- (+) -catechin has been determined in the crystalline state. Two independent molecules, denoted structure A and structure B, exist in the unit cell. Crystals are triclinic, space group P1, a = 4.8125(2) Å, b = 12.9148(8) Å, c = 13.8862(11) Å, α = 86.962(6) °, β = 89.120(5)°, γ = 88.044(5)°, Z = 2, Dc = 1.336 g cm?3, R = 0.033 for 6830 observations. The heterocyclic rings of the crystal structures are compared to previous results for 8-bromotetra-O-methyl-(+)-catechin, penta-O-acetyl-(+)-catechin, and (?) -epicatechin. One of the two molecules has a heterocyclic ring conformation similar to that observed previously for (?)-epicatechin, and the other has a heterocyclic ring conformation similar to one predicted earlier in a theoretical analysis of dimers of (+)-catechin and (?) -epicatechin. Both structure A and structure B in the crystal have heterocyclic ring conformations that place the dimethoxyphenyl substituent at C(2) in the equatorial position. However, this heterocyclic ring conformation does not explain the proton nmr coupling constant measured in solution. Molecular dynamics simulations show an equatorial ? axial interconversion of the heterocyclic ring, which can explain the nmr results. © 1993 John Wiley & Sons, Inc.  相似文献   
2.
3.
4.
The bioartificial pancreas encapsulating pancreatic islets in immunoprotective hydrogel is a promising therapy for Type 1 diabetes. As pancreatic islets are highly metabolically active and exquisitely sensitive to hypoxia, maintaining O2 supply after transplantation remains a major challenge. In this study, we address the O2 limitation by combining silicone-encapsulated CaO2 (silicone-CaO2) to generate O2 with an extracellular hemoglobin O2-carrier coencapsulated with islets. We showed that the hemoglobin improved by 37% the O2-diffusivity through an alginate hydrogel and displayed antioxidant properties neutralizing deleterious reactive O2 species produced by silicone-CaO2. While the hemoglobin alone failed to maintain alginate macroencapsulated neonate pig islets under hypoxia, silicone-CaO2 alone or combined to the hemoglobin restored islet viability and insulin secretion and prevented proinflammatory metabolism (PTGS2 expression). Interestingly, the combination took the advantages of the two individual strategies, improved neonate pig islet viability and insulin secretion in normoxia, and VEGF secretion and PDK1 normalization in hypoxia. Moreover, we confirmed the specific benefits of the combination compared to silicone-CaO2 alone on murine pseudo-islet viability in normoxia and hypoxia. For the first time, our results show the interest of combining an O2 provider with hemoglobin as an effective strategy to overcome O2 limitations in tissue engineering.  相似文献   
5.
Background aimsDendritic cells (DC) are increasingly being used as cellular vaccines to treat cancer and infectious diseases. While there have been some promising results in early clinical trials using DC-based vaccines, the inability to visualize non-invasively the location, migration and fate of cells once adoptively transferred into patients is often cited as a limiting factor in the advancement of these therapies. A novel perflouropolyether (PFPE) tracer agent was used to label human DC ex vivo for the purpose of tracking the cells in vivo by 19F magnetic resonance imaging (MRI). We provide an assessment of this technology and examine its impact on the health and function of the DC.MethodsMonocyte-derived DC were labeled with PFPE and then assessed. Cell viability was determined by examining cell membrane integrity and mitochondrial lipid content. Immunostaining and flow cytometry were used to measure surface antigen expression of DC maturation markers. Functional tests included bioassays for interleukin (IL)-12p70 production, T-cell stimulatory function and chemotaxis. MRI efficacy was demonstrated by inoculation of PFPE-labeled human DC into NOD-SCID mice.ResultsDC were effectively labeled with PFPE without significant impact on cell viability, phenotype or function. The PFPE-labeled DC were clearly detected in vivo by 19F MRI, with mature DC being shown to migrate selectively towards draining lymph node regions within 18 h.ConclusionsThis study is the first application of PFPE cell labeling and MRI cell tracking using human immunotherapeutic cells. These techniques may have significant potential for tracking therapeutic cells in future clinical trials.  相似文献   
6.
Abiomimetic motility assay is used to analyze the mechanism of force production by site-directed polymerization of actin. Polystyrene microspheres, functionalized in a controlled fashion by the N-WASP protein, the ubiquitous activator of Arp2/3 complex, undergo actin-based propulsion in a medium that consists of five pure proteins. We have analyzed the dependence of velocity on N-WASP surface density, on the concentration of capping protein, and on external force. Movement was not slowed down by increasing the diameter of the beads (0.2 to 3 microm) nor by increasing the viscosity of the medium by 10(5)-fold. This important result shows that forces due to actin polymerization are balanced by internal forces due to transient attachment of filament ends at the surface. These forces are greater than the viscous drag. Using Alexa488-labeled Arp2/3, we show that Arp2/3 is incorporated in the actin tail like G-actin by barbed end branching of filaments at the bead surface, not by side branching, and that filaments are more densely branched upon increasing gelsolin concentration. These data support models in which the rates of filament branching and capping control velocity, and autocatalytic branching of filament ends, rather than filament nucleation, occurs at the particle surface.  相似文献   
7.
Twinfilins are conserved actin-binding proteins composed of two actin depolymerizing factor homology (ADF-H) domains. Twinfilins are involved in diverse morphological and motile processes, but their mechanism of action has not been elucidated. Here, we show that mammalian twinfilin both sequesters ADP-G-actin and caps filament barbed ends with preferential affinity for ADP-bound ends. Twinfilin replaces capping protein and promotes motility of N-WASP functionalized beads in a biomimetic motility assay, indicating that the capping activity supports twinfilin's function in motility. Consistently, in vivo twinfilin localizes to actin tails of propelling endosomes. The ADP-actin-sequestering activity cooperates with the filament capping activity of twinfilin to finely regulate motility due to processive filament assembly catalyzed by formin-functionalized beads. The isolated ADF-H domains do not cap barbed ends nor promote motility, but sequester ADP-actin, the C-terminal domain showing the highest affinity. A structural model for binding of twinfilin to barbed ends is proposed based on the similar foldings of twinfilin ADF-H domains and gelsolin segments.  相似文献   
8.
9.
Global HIV-1 treatment would benefit greatly from safe herbal medicines with scientifically validated novel anti-HIV-1 activities. The root extract from the medicinal plant Pelargonium sidoides (PS) is licensed in Germany as the herbal medicine EPs®7630, with numerous clinical trials supporting its safety in humans. Here we provide evidence from multiple cell culture experiments that PS extract displays potent anti-HIV-1 activity. We show that PS extract protects peripheral blood mononuclear cells and macrophages from infection with various X4 and R5 tropic HIV-1 strains, including clinical isolates. Functional studies revealed that the extract from PS has a novel mode-of-action. It interferes directly with viral infectivity and blocks the attachment of HIV-1 particles to target cells, protecting them from virus entry. Analysis of the chemical footprint of anti-HIV activity indicates that HIV-1 inhibition is mediated by multiple polyphenolic compounds with low cytotoxicity and can be separated from other extract components with higher cytotoxicity. Based on our data and its excellent safety profile, we propose that PS extract represents a lead candidate for the development of a scientifically validated herbal medicine for anti-HIV-1 therapy with a mode-of-action different from and complementary to current single-molecule drugs.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号