首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   4篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2010年   1篇
  2009年   1篇
  2007年   1篇
  2006年   1篇
  2005年   3篇
  1999年   1篇
  1997年   2篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1977年   3篇
  1976年   1篇
  1975年   1篇
  1973年   2篇
  1972年   1篇
  1966年   1篇
排序方式: 共有41条查询结果,搜索用时 15 毫秒
1.
The kinetic mechanism of turkey gizzard smooth muscle myosin-light-chain kinase was investigated using the isolated 20-kDa light chain of myosin as substrate. The kinetic and product inhibition patterns of the forward reaction indicated an ordered sequential mechanism in which MgATP bound first, ADP was released last. The order of substrate binding and product release was confirmed independently by competitive, dead-end inhibition patterns obtained using the non-hydrolizable ATP analog adenosine 5'-[beta,gamma-imido]triphosphate. The mechanism was also characterized by a relatively strong product inhibition by ADP and a weak one by phosphorylated 20-kDa light-chain myosin, in addition to a significant inhibition by the latter product via a formation of a dead-end complex. [gamma-32P]ATP in equilibrium with [32P]phosphorylated light chain isotope-exchange data were consistent with the deduced mechanism and with the presence of the latter dead-end complex.  相似文献   
2.
The addition of either smooth muscle or brain tropomyosin to skeletal muscle actoheavy meromyosin (HMM) or acto-myosin subfragment-1 (SF1) produces an activation of the actin-activated ATPase activity up to 100%. This contrasts with the opposite, inhibitory effect produced by skeletal muscle tropomyosin. The degree of activation or inhibition depends on the ionic conditions, which influence the affinities of tropomyosin and HMM or SF1 for actin as well as on the molar ratio of actin to myosin.Enzyme kinetic analysis indicates that the inhibitory effect of skeletal muscle tropomyosin results from an approximately six- to tenfold increase in the apparent affinity (Kapp) of the myosin head for the F-actin-tropomyosin complex with a concomitant six- to tenfold reduction in the maximal turnover rate (Vmax). Thus, there is no direct competition of skeletal muscle tropomyosin and myosin for the same site on actin. Brain tropomyosin has an opposite effect, decreasing the apparent affinity with concomitant increase in the Vmax.The effect of smooth muscle tropomyosin is more complex. At high ratios of myosin to actin this tropomyosin produces the same change in the Kapp as skeletal muscle tropomyosin but yields a value of Vmax that is about twofold higher. At lower molar ratios (below about 1 to 5 myosin subfragments to actin) the activating effect of this tropomyosin remains unchanged while the apparent affinity decreases to that observed for pure F-actin.On the basis of these data as well as from experiments carried out at fixed actin and varying SF1 concentrations, it is concluded that tropomyosins act in general as allosteric un-competitive inhibitors or activators of actomyosin by increasing or reducing the co-operative activation of myosin by actin at the level of product release.  相似文献   
3.
A new technique for obtaining a myofibril-like preparation from vertebrate smooth muscle has been developed. An actomyosin can be readily extracted from these myofibrils at low ionic strength and in yields 20 times as high as previously reported. The protein composition of all preparations has been monitored using dodecylsulfate-gel electrophoresis. By this method smooth muscle actomyosin showed primarily only the major proteins, myosin, actin and tropomyosin, while the myofibrils contained, additionally, three new proteins not previously described with polypeptide chain weights of 60000, 110000 and 130000. The ATPase activities of both the myofibrils and actomyosin preparations are considerably higher than previously described for vertebrate smooth muscle. They are sensitive to micromolar Ca2+ ion concentrations to the same degree as comparable skeletal and cardiac muscle preparations, even though troponin-like proteins could not be identified in these smooth muscle preparations. From the latter observation and the presence of Ca2+-sensitivity in tropomyosin-free actomyosin it is suggested that this calcium sensitivity is, as in some invertebrate muscles, a property of the myosin molecule.  相似文献   
4.
5.
Smooth and non-muscle tropomyosins were found to produce a 2-3-fold Ca-insensitive stimulation of the ATPase activity of reconstituted skeletal muscles actomyosin at normal MgATP concentrations and physiological ratios of myosin to actin. Under the same conditions skeletal muscles tropomyosin had no effect. Similar effects of these three tropomyosins were observed for the low myosin/F-actin ratios necessary for kinetic measurements. Since it could be established that this actomyosin system, with or without tropomyosin, obeyed Michaelian kinetics, the tropomyosin effects could be interpreted in terms of their influence on maximal turnover (V) or on the affinity of myosin for actin (Kapp). Accordingly, gizzard tropomyosin had practically no effect on the affinity and reduced only slightly the value of V, compared to pure actin. In contrast to gizzard tropomyosin, brain tropomyosin produced an approximately twofold increase in both Kapp and V; i.e. it increased the turnover rate but decreased the affinity. It is apparent from the data that brain tropomyosin acts as an uncompetitive activator with respect to pure actin, while having the same V as the actin plus gizzard tropomyosin complex. Further studies on these tropomyosins show that only skeletal and smooth muscle tropomyosin have similar functional properties with respect to troponin inhibition and the activation of the ATPase at low ATP concentrations. It is suggested that the noted increases in V by tropomyosin are caused by the acceleration of the dissociation of the myosin head from actin at the end point of the cross bridge movement.  相似文献   
6.
Antibodies to chicken gizzard myosin, subfragment 1, light chain 20, and light meromyosin were used to visualize myosin in stress fibers of cultured chicken cells. The antibody specificity was tested on purified gizzard proteins and total cell lysates using immunogold silver staining on protein blots. Immunofluorescence on cultured chicken fibroblasts and epithelial cells exhibited a similar staining pattern of antibodies to total myosin, subfragment 1, and light chain 20, whereas the antibodies to light meromyosin showed a substantially different reaction. The electron microscopic distribution of these antibodies was investigated using the indirect and direct immunogold staining method on permeabilized and fixed cells. The indirect approach enabled us to describe the general distribution of myosin in stress fibers. Direct double immunogold labeling, however, provided more detailed information on the orientation of myosin molecules and their localization relative to alpha-actinin: alpha-actinin, identified with antibodies coupled to 10-nm gold, was concentrated in the dense bodies or electron-dense bands of stress fibers, whereas myosin was confined to the intervening electron-lucid regions. Depending on the antibodies used in combination with alpha-actinin, the intervening regions revealed a different staining pattern: antibodies to myosin (reactive with the head portion of nonmuscle myosin) and to light chain 20 (both coupled to 5-nm gold) labeled two opposite bands adjacent to alpha-actinin, and antibodies to light meromyosin (coupled to 5-nm gold) labeled a single central zone. Based on these results, we conclude that myosin in stress fibers is organized into bipolar filaments.  相似文献   
7.
The activation of smooth muscle myosin light chain kinase (MLCKase) by calcium and calmodulin (CM) was investigated over a wide range of concentrations of the enzyme using myosin (MY) or its isolated phosphorylatable light chain (L20) as substrates. The enzyme showed allosteric behavior. The specific phosphorylation activity was dependent on the concentration of MLCKase as well as on the concentrations of both substrates. However, at the lower (nanomolar) range of kinase the corresponding substrate rate relationships were hyperbolic. A high positive level of co-operativity of kinase was also observed for activation by CM in the presence of Ca2+. There was a pronounced CM/Ca-dependent inhibition of MLCKase activity when its molar ratio to CM was four to one or more. These kinetic data suggested that MLCKase could exist in several oligomeric forms, with an inactive high molecular size form and an active low molecular size form (protomers and/or dimers). This conclusion was confirmed by gel filtration studies. CM was not directly involved in the oligomerization process but instead, the oligomeric kinase shared an increased affinity for CM.  相似文献   
8.
It was previously shown that tryptic digestion of subfragment 1 (S1) of skeletal muscle myosins at 0 degree C results in cleavage of the heavy chain at a specific site located 5 kDa from the NH2-terminus. This cleavage is enhanced by nucleotides and suppressed by actin and does not occur at 25 degrees C, except in the presence of nucleotide. Here we show a similar temperature sensitivity and protection by actin of an analogous chymotryptic cleavage site in the heavy chain of gizzard S1. The results support the view that the myosin head, in general, can exist in two different conformational states even in the absence of nucleotides and actin, and indicate that the heavy chain region 5 kDa from the NH2-terminus is involved in the communication between the sites of nucleotide and actin binding. We also show here for the first time that the S1-S2 junction in gizzard myosin can be cleaved by chymotrypsin and that this cleavage (observed in papain-produced S1 devoid of the regulatory light chain) is also temperature-dependent but insensitive to nucleotides and actin. It is suggested that the temperature-dependent alteration in the flexibility of the head-rod junction, which is apparent from these and similar observations on skeletal muscle myosin [Miller, L. & Reisler, E. (1985) J. Mol. Biol. 182, 271-279; Redowicz, M.J. & Strzelecka-Go?aszewska, H. (1988) Eur. J. Biochem. 177, 615-624], may contribute to the temperature dependence of some steps in the cross-bridge cycle.  相似文献   
9.
Smooth muscle myosin copurifies with myosin light chain kinase (MLCK) and calmodulin (CaM) as well as with variable amounts of myosin phosphatase. Therefore, myosin filaments formed in vitro also contain relatively high levels of these enzymes. Thus these filaments may be considered to be native-like because they are similar to those expected to exist in vivo. These endogenous enzymes are present at high concentrations relative to myosin, sufficient for rapid phosphorylation and dephosphorylation of the filaments at rates comparable to those observed for contraction and relaxation in intact muscle strips. The phosphorylation by MLCK/CaM complex appears to exhibit some directionality and is not governed by a random diffusional process. For the mixtures of myosin filaments with and without the endogenous MLCK/CaM complex, the complex preferentially phosphorylates its own parent filament at a higher rate than the neighboring filaments. This selective or vectorial-like activation is lost or absent when myosin filaments are dissolved at high ionic strength. Similar vectorial-like activation is exhibited by the reconstituted filament suspensions, but the soluble systems composed of isolated regulatory light chain or soluble myosin head subfragments exhibit normal diffusional kinetic behavior. At physiological concentrations, kinase related protein (telokin) effectively modulates the activation process by reducing the phosphorylation rate of the filaments without affecting the overall phosphorylation level. This results from telokin-induced liberation of the active MLCK/CaM complex from the filaments, so that the latter can also activate the neighboring filaments via a slower diffusional process. When this complex is bound at insufficient levels, this actually results in acceleration of the initial phosphorylation rates. In short, I suggest that in smooth muscle, telokin plays a chaperone role for myosin and its filaments.  相似文献   
10.
The mechanism of telokin action on reversible phosphorylation of turkey gizzard myosin was investigated using a native-like filamentous myosin. This myosin contained endogenous calmodulin (CaM) and myosin light chain kinase (MLCK) at a molar ratio to myosin of about 1 to 40 or less depending on the initial extractions conditions. These levels were sufficient to fully phosphorylate myosin within 20-40 s or less after addition of [gamma-32P]ATP, but when the ATP was depleted, they became dephosphorylated indicating the presence of myosin light chain phosphatase (MLCP). Addition of telokin at the 1 to 1 or higher molar ratio to myosin caused a three- to five-fold inhibition of the initial phosphorylation rates (without reduction of the overall extent of phosphorylation) and produced a similar increase in the rate of dephosphorylation. The inhibition was also observed for myosin filaments free of MLCK and CaM together with constitutively active MLCKs produced by digestion, or by expression of a truncated mammalian kinase as well as for the wild-type enzyme. Thus, neither N- nor C-terminal of MLCK was necessary for interaction of myosin with telokin and the inhibition resulted from telokin-induced change of myosin head configuration within the filament that prevented their ordered, paracrystaline-like, aggregation. Sedimentation of the filamentous myosin in glycerol gradients showed that this change made the filaments less compact and facilitated release of the endogenous MLCK/CaM complex. For a mixture of the filaments with or without the complex, the configuration change resulted in an increase of the phosphorylation rate but not in its inhibition. The increase of the rate resulting from the liberation of the complex was also observed in mixtures of the filamentous myosin with added isolated regulatory light chain (ReLC) or soluble myosin head subfragment. This observation reinforces the above conclusions. The acceleration of the MLCP activity by telokin was shown to result from dissociation of its catalytic subunit from a MLCK/MLCP complex bound to the filamentous myosin. Analogous desensitizing effects of telokin were also demonstrated for the contraction and relaxation cycle of Triton-skinned fibers from guinea pig Teania coli. Taken together, our results indicate that telokin acted as an effective modulator or chaperone of the myosin filament and a scheme for its action in smooth muscle was proposed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号