首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  2011年   2篇
  2009年   1篇
  2008年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
A three-phase fluidized bed equipped with a turbine agitator was utilized as a simple device for disrupting bakers' yeast cells (Saccharomyces cerevisiae). The degree of yeast cell disruption was evaluated based on the number of broken cells and its validity was confirmed by the total amount of crude soluble proteins released and by microscopic observation. It was found that the equipment could yield 90% of yeast cell disruption. With the presence of glass beads, the degree of cell disruption became higher as agitating speed is increased. The disruption enhancement would be attributed to the grinding effect resulting from the interaction between yeast cells and glass beads. One-thousand micrometers of glass beads yielded a higher degree of disruption than larger ones. An increase in liquid flow rate hindered the degree of disruption because of shorter contact time although the shear rates in the yeast suspension would become more rigorous.  相似文献   
2.
The nanoemulsions composed of citronella oil, hairy basil oil, and vetiver oil with mean droplet sizes ranging from 150 to 220 nm were prepared and investigated both in vitro and in vivo. Larger emulsion droplets (195–220 nm) shifted toward a smaller size (150–160 nm) after high-pressure homogenization and resulted in higher release rate. We proposed that thin films obtained from the nanoemulsions with smaller droplet size would have higher integrity, thus increasing the vaporization of essential oils and subsequently prolonging the mosquito repellant activity. The release rates were fitted with Avrami’s equations and n values were in the same range of 0.6 to 1.0, implying that the release of encapsulated limonene was controlled by the diffusion mechanism from the emulsion droplet. By using high-pressure homogenization together with optimum concentrations of 5% (w/w) hairy basil oil, 5% (w/w) vetiver oil (5%), and 10% (w/w) citronella oil could improve physical stability and prolong mosquito protection time to 4.7 h due to the combination of these three essential oils as well as small droplet size of nanoemulsion.  相似文献   
3.
The complexation between two isomers of citral in lemongrass oil and varying types of cyclodextrins (CDs), α-CD, β-CD, and HP-β-CD, were studied by molecular modeling and physicochemical characterization. The results obtained revealed that the most favorable complex formation governing between citrals in lemongrass oil and CDs were found at a 1:2 mole ratio for all CDs. Complex formation between E-citral and CD was more favorable than between Z-citral and CD. The thermal stability of the inclusion complex was observed compared to the citral in the lemongrass oil. The release time course of citral from the inclusion complex was the diffusion control, and it correlated well with Avrami's equation. The release rate constants of the E- and Z-citral inclusion complexes at 50 °C, 50% RH were observed at 1.32×10(-2) h(-1) and 1.43×10(-2) h(-1) respectively.  相似文献   
4.
In animal cells a double-membrane-bound structure, the autophagosome, encloses a portion of the cytoplasm. The encapsulated material becomes digested after fusion of the autophagosome with a vesicle containing lytic enzymes. The autophagosome is then termed autolysosome. In intact plants, structures similar to animal autophagosomes/autolysosomes have been found only in a few types of cells. Additionally, some early papers indicated that plastids can function similar to autophagosomes/autolysosomes. Here, we report that plastids in Dendrobium cv. Lucky Duan petals produced an endocytosis-like invagination of the two outer membranes. The opening between the invagination space and the cytoplasm was almost isodiametric, less than 0.2 μm in diameter. The volume of the space formed by the invagination had a maximum of about half of the total plastid volume. Staining of the invagination lumen for acid phosphatase, a marker of organelles showing autophagic activity, was positive. Membranes and numerous ribosomes were observed inside the lumen of the invagination. The structure of the material inside the lumen varied from that of the cytoplasm to uniform electron-translucent, indicating that the enclosed cytoplasmic material became completely digested. No support was found for the idea that the material engulfed by the plastid or the whole plastid became transferred to a vacuole. Taken together, the data suggested the hypothesis that plastids in Dendrobium petal mesophyll cells can function in a way similar to both autophagosomes and autolysosomes in animal cells.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号