首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   1篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2014年   2篇
  2012年   2篇
  2011年   2篇
  2009年   2篇
  2008年   5篇
  2007年   3篇
  2006年   5篇
  2005年   1篇
  2002年   5篇
  2001年   2篇
  1999年   3篇
  1997年   1篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1972年   1篇
排序方式: 共有46条查询结果,搜索用时 484 毫秒
1.
Aoto  Saki  Fushimi  Mayu  Yura  Kei  Okamura  Kohji 《Mammalian genome》2020,31(7-8):240-251
Mammalian Genome - While CpG dinucleotides are significantly reduced compared to other dinucleotides in mammalian genomes, they can congregate and form CpG islands, which localize around...  相似文献   
2.
Erythrocytes are very susceptible to oxidative stress, having a high content of intracellular oxygen and hemoglobin. In the present study, exposure to oxidative stress resulted in a significant impairment of erythrocyte membrane functions, such as deformability and anion exchange. Band 3 protein, also known as anion exchanger-1, plays an important role in these two functions. We show that oxidative stress activated caspase-3 inside the erythrocytes, which resulted in band 3 protein cleavage. Interestingly, inhibition of the caspase-3 with its specific inhibitor not only suppressed the digestion of band 3 protein, but also blunted the functional damage to erythrocytes, such as deformability and anion exchange, without changing the level of peroxidation of membrane lipids. These results provide experimental evidence that activation of caspase-3 plays an important role in the oxidative stress-induced impairment of membrane functions of erythrocytes.  相似文献   
3.
4.
5.
Microsetella norvegica is a widely distributed marine planktonicharpacticoid copepod, which is poorly known from the biologicalpoint of view. We investigated the seasonal population dynamicsandproduction of M. norvegica in the central part of the InlandSea of Japan. It occurred throughout the year, whilst its reproductionwas confined to the warm season between May and November. Theproportion of ovigerous females, which carry a single egg sac,was low (mean: 23.1%) in August and September, and high (53.6%)in October. Their brood size attained a maximum (mean: 15.8eggs per sac) in July and August and declined gradually to 6.2eggs in November. Duration time from egg laying to moultingto adulthood was temperature-dependent; it was 31.9 and 14.3days at 20 and 27°C, respectively, under excess food conditionsin the laboratory. An enormously high population abundance (7.32x 104 individuals m-3), which accounted for 86.5% of the totalcopepods, and biomass (69.6 mg C m-3) gave an annual maximumproduction rate of 4.90 mg C m-3 day-1) in October. Naupliiand copepodites disappeared in December, and the overwinteringpopulation was represented by adults, mainly large females.Associations of M. norvegica with marine snow aggregates, whichhave often been found in oligotrophic waters, were not observedin the food-rich environment of the Inland Sea of Japan.  相似文献   
6.
The adaptor protein Shc was prepared as glutathione S-transferase fusion proteins (GST–Shc) and used as in vitro substrate for c-Src. Since phosphotyrosine-binding domain of Shc has been shown to bind phosphatidyl-inositol 4,5-bisphosphate (PtdIns(4,5)P2) [Zhou et al. (1995) Nature 378, 584–592], effect of PtdIns(4,5)P2 on the phosphorylation of GST–Shc by c-Src was examined. PtdIns(4,5)P2 stimulated the phosphorylation of GST–Shc without any effect on the c-Src activity as judged by both its autophosphorylation and phosphorylation of exogenous substrate, Cdc2 peptide. On the other hand, phosphatidylserine, phosphatidic acid, phosphatidylinositol, and phosphatidylinositol 4-phosphate but not phosphatidylcholine stimulated the c-Src activity itself. Km for GST–Shc in the presence of 1 μM PtdIns(4,5)P2 was calculated to be 90 nM. The PtdIns(4,5)P2-dependent phosphorylation of GST–Shc was inhibited by a GST–fusion protein containing the phosphotyrosine-binding domain of Shc. These results suggest that PtdIns(4,5)P2 can act as a regulator of phosphorylation of Shc by c-Src through its binding to Shc.  相似文献   
7.
A host of technologies exists for the separation of living, nonadherent cells, with separation decisions typically based on fluorescence or immunolabeling of cells. Methods to separate adherent cells as well as to broaden the range of possible sorting criteria would be of high value and complementary to existing strategies. Cells were cultured on arrays of releasable pallets. The arrays were screened and individual cell(s)/pallets were released and collected. Conventional fluorescence and immunolabeling of cells were compatible with the pallet arrays, as were separations based on gene expression. By varying the size of the pallet and the number of cells cultured on the array, single cells or clonal colonies of cells were isolated from a heterogeneous population. Since cells remained adherent throughout the isolation process, separations based on morphologic characteristics, for example cell shape, were feasible. Repeated measurements of each cell in an array were performed permitting the selection of cells based on their temporal behavior, e.g. growth rate. The pallet array system provides the flexibility to select and collect adherent cells based on phenotypic and temporal criteria and other characteristics not accessible by alternative methods.  相似文献   
8.
9.
10.
In humans, holoprosencephaly (HPE) is a common birth defect characterized by the absence of midline cells from brain, facial, and oral structures. To understand the pathoetiology of HPE, we investigated the involvement of mammalian prechordal plate (PrCP) cells in HPE pathogenesis and the requirement of the secreted protein sonic hedgehog (Shh) in PrCP development. We show using rat PrCP lesion experiments and DiI labeling that PrCP cells are essential for midline development of the forebrain, foregut endoderm, and ventral cranial mesoderm in mammals. We demonstrate that PrCP cells do not develop into ventral cranial mesoderm in Shh−/− embryos. Using Shh−/− and chimeric embryos we show that Shh signal is required for the maintenance of PrCP cells in a non-cell autonomous manner. In addition, the hedgehog (HH)-responding cells that normally appear during PrCP development to contribute to midline tissues, do not develop in the absence of Shh signaling. This suggests that Shh protein secreted from PrCP cells induces the differentiation of HH-responding cells into midline cells. In the present study, we show that the maintenance of a viable population of PrCP cells by Shh signal is an essential process in development of the midline of the brain and craniofacial structures. These findings provide new insight into the mechanism underlying HPE pathoetiology during dynamic brain and craniofacial morphogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号