首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   646篇
  免费   45篇
  2024年   2篇
  2023年   10篇
  2022年   27篇
  2021年   39篇
  2020年   15篇
  2019年   23篇
  2018年   30篇
  2017年   22篇
  2016年   33篇
  2015年   28篇
  2014年   52篇
  2013年   66篇
  2012年   55篇
  2011年   61篇
  2010年   36篇
  2009年   21篇
  2008年   42篇
  2007年   27篇
  2006年   31篇
  2005年   22篇
  2004年   16篇
  2003年   10篇
  2002年   11篇
  2000年   1篇
  1999年   1篇
  1998年   3篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1990年   1篇
  1989年   1篇
  1973年   1篇
排序方式: 共有691条查询结果,搜索用时 703 毫秒
1.
Fourier transform infrared (FTIR) spectroscopic imaging is an emerging microscopy modality for clinical histopathologic diagnoses as well as for biomedical research. Spectral data recorded in this modality are indicative of the underlying, spatially resolved biochemical composition but need computerized algorithms to digitally recognize and transform this information to a diagnostic tool to identify cancer or other physiologic conditions. Statistical pattern recognition forms the backbone of these recognition protocols and can be used for highly accurate results. Aided by biochemical correlations with normal and diseased states and the power of modern computer-aided pattern recognition, this approach is capable of combating many standing questions of traditional histology-based diagnosis models. For example, a simple diagnostic test can be developed to determine cell types in tissue. As a more advanced application, IR spectral data can be integrated with patient information to predict risk of cancer, providing a potential road to precision medicine and personalized care in cancer treatment. The IR imaging approach can be implemented to complement conventional diagnoses, as the samples remain unperturbed and are not destroyed. Despite high potential and utility of this approach, clinical implementation has not yet been achieved due to practical hurdles like speed of data acquisition and lack of optimized computational procedures for extracting clinically actionable information rapidly. The latter problem has been addressed by developing highly efficient ways to process IR imaging data but remains one that has considerable scope for progress. Here, we summarize the major issues and provide practical considerations in implementing a modified Bayesian classification protocol for digital molecular pathology. We hope to familiarize readers with analysis methods in IR imaging data and enable researchers to develop methods that can lead to the use of this promising technique for digital diagnosis of cancer.  相似文献   
2.
3.

Otitis media is a common childhood infection, frequently requiring antibiotics. With high rates of antibiotic prescribing and increasing antibiotic resistance, new strategies in otitis media prevention and treatment are needed. The aim of this study was to assess the in vitro inhibitory activity Streptococcus salivarius BLIS K12 against otitis media pathogens. Efficacy of the bacteriocin activity of S. salivarius BLIS K12 against the otitis media isolates was assessed using the deferred antagonism test. Overall, 48% of pathogenic isolates exhibited some growth inhibition by S. salivarius BLIS K12. S. salivarius BLIS K12 can inhibit the in vitro growth of the most common pathogens.

  相似文献   
4.
5.
Adequate dietary calcium (Ca) intake is essential for bone accretion, peak bone mass (PBM) attainment, bone quality and strength during the mammalian growth period. Severe Ca deficiency during growing age results in secondary hyperparathyroidism (SHPT) and poor bone quality and strength. However, the impact of moderate Ca deficiency during rats early growth period on bone health and the reversibility with supplementing calcium later in adult life remains unclear. Female Sprague-Dawley (SD) rats (postnatal 28th day, P28) were initiated either with a moderate calcium-deficient diet (MCD, 0.25% w/w Ca) or a control diet (0.8% w/w Ca, control group) till P70. Thereafter, MCD rats were continued either with MCD diet or supplemented with calcium diet (0.8% w/w Ca, calcium supplemented group, CaS) till P150. Another group (control rats) were fed 0.8% w/w Ca containing diet from P28 till P150.MCD group, as compared to the control group, had significantly reduced serum ionized Ca and procollagen type 1 N-terminal propeptide (P1NP) at P70 while no significant change was observed in serum corrected Ca, inorganic phosphate (P), alkaline phosphatase (ALP), 25-hydroxy vitamin D [25(OH)D], intact parathyroid hormone (iPTH), and urinary C-terminal telopeptide of collagen 1 (CTX-1), Ca, and P. Femoral and tibial metaphysis in MCD rats had significantly reduced linear growth, cortical and trabecular volumetric BMD (vBMD), trabecular microarchitecture (BV/TV%, trabecular thickness, separation and number, structural model index and connectivity density), cortical thickness, and bone stiffness despite the absence of secondary hyperparathyroidism (SHPT). Continued MCD at P70–P150 results in persistence of compromised bone strength while calcium supplementation (CaS group) improved all the parameters related to bone strength and microarchitecture. Our results indicate that uncorrected moderate/subclinical calcium deficiency in growing rats can result in poor bone quality and strength despite the absence of SHPT. This finding could have relevance in children with poor calcium intake in childhood and adolescence.  相似文献   
6.
7.
8.
ABSTRACT

Endogenous glucocorticoids have diverse physiological effects and are important regulators of metabolism, immunity, cardiovascular function, musculoskeletal health and central nervous system activity. Synthetic glucocorticoids have received widespread attention for their potent anti-inflammatory activity and have become an important class of drugs used to augment endogenous glucocorticoid activity for the treatment of a host of chronic inflammatory conditions. Chronic use of synthetic glucocorticoids is associated with a number of adverse effects as a result of the persistent dysregulation of glucocorticoid sensitive pathways. A failure to consider the pronounced circadian rhythmicity of endogenous glucocorticoids can result in either supraphysiological glucocorticoid exposure or severe suppression of endogenous glucocorticoid secretion, and is thought be a causal factor in the incidence of adverse effects during chronic glucocorticoid therapy. Furthermore, given that synthetic glucocorticoids have potent feedback effects on the hypothalamic-pituitary-adrenal (HPA) axis, physiological factors which can give rise to individual variability in HPA axis activity such as sex, age, and disease state might also have substantial implications for therapy. We use a semi-mechanistic mathematical model of the rodent HPA axis to study how putative sex differences and individual variability in HPA axis regulation can influence the effects of long-term synthetic exposure on endogenous glucocorticoid circadian rhythms. Model simulations suggest that for the same drug exposure, simulated females exhibit less endogenous suppression than males considering differences in adrenal sensitivity and negative feedback to the hypothalamus and pituitary. Simulations reveal that homeostatic regulatory variability and chronic stress-induced regulatory adaptations in the HPA axis network can result in substantial differences in the effects of synthetic exposure on the circadian rhythm of endogenous glucocorticoids. In general, our results provide insight into how the dosage and exposure profile of synthetic glucocorticoids could be manipulated in a personalized manner to preserve the circadian dynamics of endogenous glucocorticoids during chronic therapy, thus potentially minimizing the incidence of adverse effects associated with long-term use of glucocorticoids  相似文献   
9.
Kumar  Alok  Kalita  J.  Sinha  Rohit A.  Singh  Gajendra  B  Anjum  Shukla  Mukti  Tiwari  Swasti  Dhole  T. N.  Misra  U. K. 《Neurochemical research》2020,45(9):2184-2195
Neurochemical Research - Role of autophagy in Japanese encephalitis viral (JEV) infection is not well known. In the present study, we reported the role of autophagy flux in microglia activation,...  相似文献   
10.
A study was carried out to test direct and indirect antagonistic effect against Fusarium wilt, caused by Fusarium oxysporum f. sp. ciceri (FOC), and plant growth-promoting (PGP) traits of bacteria isolated from rhizosphere soils of chickpea (Cicer arietinum L.). A total of 40 bacterial isolates were tested for their antagonistic activity against FOC and of which 10 were found to have strong antagonistic potential. These were found to be Streptomyces spp. (five isolates) and Bacillus spp. (five isolates) in the morphological and biochemical characterisation and 16S rDNA analysis. Under both greenhouse and wilt sick field conditions, the selected Streptomyces and Bacillus isolates reduced disease incidence and delayed expression of symptoms of disease, over the non-inoculated control. The PGP ability of the isolates such as nodule number, nodule weight, shoot weight, root weight, grain yield and stover yield were also demonstrated under greenhouse and field conditions over the non-inoculated control. Among the ten isolates, Streptomyces sp. AC-19 and Bacillus sp. BS-20 were found to have more potential for biocontrol of FOC and PGP in chickpea. This investigation indicates that the selected Streptomyces and Bacillus isolates have the potential to control Fusarium wilt disease and to promote plant growth in chickpea.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号