首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   344篇
  免费   19篇
  2024年   1篇
  2023年   3篇
  2022年   6篇
  2021年   19篇
  2020年   2篇
  2019年   7篇
  2018年   18篇
  2017年   13篇
  2016年   15篇
  2015年   20篇
  2014年   25篇
  2013年   37篇
  2012年   37篇
  2011年   33篇
  2010年   17篇
  2009年   9篇
  2008年   15篇
  2007年   16篇
  2006年   12篇
  2005年   9篇
  2004年   15篇
  2003年   9篇
  2002年   8篇
  2001年   3篇
  2000年   6篇
  1999年   3篇
  1997年   2篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
排序方式: 共有363条查询结果,搜索用时 15 毫秒
1.
Jatropha is an important second-generation biofuel plant. Salinity is a major factor adversely impacting the growth and yield of several plants including Jatropha. SbNHX1 is a vacuolar Na+/H+ antiporter gene that compartmentalises excess Na+ ions into the vacuole and maintains ion homeostasis. We have previously cloned and characterised the SbNHX1 gene from an extreme halophyte, Salicornia brachiata. Transgenic plants of Jatropha curcas with the SbNHX1 gene were developed using microprojectile bombardment mediated transformation. Integration of the transgene was confirmed by PCR and Rt-PCR and the copy number was determined by real time qPCR. The present study of engineering salt tolerance in Jatropha is the first report to date. Salt tolerance of the transgenic lines JL2, JL8 and JL19 was confirmed by leaf senescence assay, chlorophyll estimation, plant growth, ion content, electrolyte leakage and malondialdehyde (MDA) content analysis. Transgenic lines showed better salt tolerance than WT up to 200 mM NaCl. Imparting salt tolerance to Jatropha using the SbNHX1 gene may open up the possibility of cultivating it in marginal salty land, releasing arable land presently under Jatropha cultivation for agriculture purposes. Apart from this, transgenic Jatropha can be cultivated with brackish water, opening up the possibility of sustainable cultivation of this biofuel plant in salty coastal areas.  相似文献   
2.
3.
Parthenium hysterophorus L. an exotic, pernicious weed is considered as one of the most troublesome weeds for agricultural sector by virtue of its high ecological amplitude and adaptability. Microbes and their by-products are now proved to be a worthy alternative to toxic chemicals used for weed management. Alternaria macrospora MKPI was isolated from the parthenium leaves infected with leaf blight and found pathogenic to the weed. The herbicidal potential of cell free culture filtrate of A. macrospora MKP1 has been tested against parthenium by employing detached leaf bioassay and seed germination bioassay and a significant damage was exhibited by the cultural filtrate of pathogen to the parthenium leaves and seeds.  相似文献   
4.
Enhanced catalytic activities of different lignocellulases were obtained from Armillaria gemina under statistically optimized parameters using a jar fermenter. This strain showed maximum xylanase, endoglucanase, cellobiohydrolase, and β-glucosidase activities of 1,270, 146, 34, and 15 U mL?1, respectively. Purified A. gemina xylanase (AgXyl) has the highest catalytic efficiency (k cat/K m?=?1,440 mg?mL?1?s?1) ever reported for any fungal xylanase, highlighting the significance of the current study. We covalently immobilized the crude xylanase preparation onto functionalized silicon oxide nanoparticles, achieving 117 % immobilization efficiency. Further immobilization caused a shift in the optimal pH and temperature, along with a fourfold improvement in the half-life of crude AgXyl. Immobilized AgXyl gave 37.8 % higher production of xylooligosaccharides compared to free enzyme. After 17 cycles, the immobilized enzyme retained 92 % of the original activity, demonstrating its potential for the synthesis of xylooligosaccharides in industrial applications.  相似文献   
5.
The increasingdemandfor biopharmaceutical products drives the search for efficient cell factories that are able to sustainably support rapid growth, high productivity, and product quality. As these depend on energy generation, here the genomic variation in nuclear genes associated with mitochondria and energy metabolism and the mitochondrial genome of 14 cell lines is investigated. The variants called enable reliable tracing of lineages. Unique sequence variations are observed in cell lines adapted to grow in protein‐free media, enriched in signaling pathways or mitogen‐activated protein kinase 3. High‐producing cell lines bear unique mutations in nicotinamide adenine dinucleotide (NADH) dehydrogenase (ND2 and ND4) and in peroxisomal acyl‐CoA synthetase (ACSL4), involved in lipid metabolism. As phenotypes are determined not only by functional mutations, but also by the exquisite regulation of expression patterns, it is not surprising that ≈50% of the genes investigated here are found to be differentially methylated and thus epigenetically controlled, enabling a clear distinction of high producers, and cells adapted to a minimal, glutamine (Gln)‐free medium. Similar pathways are enriched as those identified by genome variation. This strengthens the hypothesis that these phenomena act together to define cell behavior.  相似文献   
6.
7.
8.
Cellular and humoral immunity induced by Mycobacterium tuberculosis has led to identification of newer vaccine candidates, but despite this, many questions concerning the protection against tuberculosis remain unanswered. Recent progress in this field has centered on T cell subset responses and cytokines that these cells secrete. There has been a steady progress in identification and characterization of several classes of major mycobacterial proteins which includes secretory/export proteins, cell wall associated proteins, heat shock proteins and cytoplasmic proteins. The protein antigens are now believed to represent the key protective immunity inducing antigens in the bacillus. In this review, various mycobacterial protein antigens of vaccination potential are compared for their efficacy in light of current immunological knowledge.  相似文献   
9.
10.
A number of factors affect the infectivity of retroviruses. The effect of pH on infectivity and morphology of ecotropic moloney murine leukemia virus (MoMuLV) was determined in this work. The ecotropic MoMuLVs were found to remain infectious at a narrow pH range from 5.5 to 8.0. Our experiments indicated that the viruses were inactivated swiftly at lower or higher pH. Within 5 min of exposure to pH 4 about 95% of the viruses lost infectiousness. The viruses were completely inactivated after exposure to pH < 3 or pH >11 for 5 min. The inactivation of MoMuLV was irreversible. Electron microscopy revealed that ecotropic MoMuLV remained round-shaped at pH between 7.0 and 5. They became irregular with a convex head at pH < 4. At pH 2, virtually all virion particles were penetrated by stains, causing the accumulation of heavy metals inside the particles. The penetration of heavy metal inside the particles indicated the disassociation of the lipid bilayer of the viruses at low pH. A FACS-based screening strategy for selecting high-titer retrovirus producing cell lines is also presented in this report.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号