首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1107篇
  免费   51篇
  1158篇
  2023年   2篇
  2022年   6篇
  2021年   16篇
  2020年   9篇
  2019年   10篇
  2018年   13篇
  2017年   19篇
  2016年   34篇
  2015年   54篇
  2014年   66篇
  2013年   71篇
  2012年   106篇
  2011年   105篇
  2010年   65篇
  2009年   56篇
  2008年   86篇
  2007年   69篇
  2006年   48篇
  2005年   71篇
  2004年   66篇
  2003年   47篇
  2002年   44篇
  2001年   14篇
  2000年   7篇
  1999年   8篇
  1998年   11篇
  1997年   7篇
  1996年   3篇
  1995年   4篇
  1994年   8篇
  1993年   5篇
  1992年   4篇
  1991年   4篇
  1990年   3篇
  1988年   1篇
  1987年   1篇
  1982年   1篇
  1979年   1篇
  1978年   1篇
  1976年   2篇
  1974年   1篇
  1973年   2篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
  1967年   1篇
  1964年   1篇
  1940年   1篇
排序方式: 共有1158条查询结果,搜索用时 0 毫秒
1.
New screening techniques for improved enzyme variants in turbid media are urgently required in many industries such as the detergent and food industry. Here, a new method is presented to measure enzyme activity in different types of substrate suspensions. This method allows a semiquantitative determination of protease activity using native protein substrates. Unlike conventional techniques for measurement of enzyme activity, the BioLector technology enables online monitoring of scattered light intensity and fluorescence signals during the continuous shaking of samples in microtiter plates. The BioLector technique is hereby used to monitor the hydrolysis of an insoluble protein substrate by measuring the decrease of scattered light. The kinetic parameters for the enzyme reaction (V(max,app) and K(m,app)) are determined from the scattered light curves. Moreover, the influence of pH on the protease activity is investigated. The optimal pH value for protease activity was determined to be between pH 8 to 11 and the activities of five subtilisin serine proteases with variations in the amino acid sequence were compared. The presented method enables proteases from genetically modified strains to be easily characterized and compared. Moreover, this method can be applied to other enzyme systems that catalyze various reactions such as cellulose decomposition.  相似文献   
2.
Pseudomonas putida S-313 is able to desulphonate a broad range of aromatic sulphonates to provide sulphur for growth by monooxygenolytic cleavage to yield the corresponding phenol. After miniTn5 transposon mutagenesis of this strain, 11 mutants were isolated that were no longer able to utilize benzenesulphonate as a sulphur source. Three of these mutants were defective in the utilization of all aromatic sulphonates tested, but they grew normally with other sulphur sources. These strains contained independent insertions in the novel 4.2 kb asfRABC gene cluster, encoding a putative reductase (AsfA), a ferredoxin (AsfB), a putative periplasmic binding protein (AsfC), which was localized to the periplasm using alkaline phosphatase fusions, and a divergently oriented fourth gene, asfR, that encoded a LysR-type regulator protein. A further mutant was interrupted in the ssu locus, which includes the gene for a putative desulphonative monooxygenase. Transformation of Pseudomonas aeruginosa with the asfRAB genes was sufficient to allow arylsulphonate utilization by this species, which does not normally use these compounds, suggesting that the AsfAB proteins may constitute an arylsulphonate-specific electron transport system that interacts with a less specific oxygenase. Expression of the asfABC genes in P. putida was induced by benzenesulphonate or toluenesulphonate, and it was repressed in the presence of sulphate in the growth medium. AsfR was a negative regulator of asfABC expression, and toluenesulphonate induced expression of these genes indirectly by reducing the expression of the asfR gene.  相似文献   
3.
4.
Mammalian cleavage factor I (CF Im) is composed of two polypeptides of 25 kDa and either a 59 or 68 kDa subunit (CF Im25, CF Im59, CF Im68). It is part of the cleavage and polyadenylation complex responsible for processing the 3′ ends of messenger RNA precursors. To investigate post-translational modifications in factors of the 3′ processing complex, we systematically searched for enzymes that modify arginines by the addition of methyl groups. Protein arginine methyltransferases (PRMTs) are such enzymes that transfer methyl groups from S-adenosyl methionine to arginine residues within polypeptide chains resulting in mono- or dimethylated arginines. We found that CF Im68 and the nuclear poly(A) binding protein 1 (PABPN1) were methylated by HeLa cell extracts in vitro. By fractionation of these extracts followed by mass spectral analysis, we could demonstrate that the catalytic subunit PRMT5, together with its cofactor WD45, could symmetrically dimethylate CF Im68, whereas pICln, the third polypeptide of the complex, was stimulatory. As sites of methylation in CF Im68 we could exclusively identify arginines in a GGRGRGRF or “GAR” motif that is conserved in vertebrates. Further in vitro assays revealed a second methyltransferase, PRMT1, which modifies CF Im68 by asymmetric dimethylation of the GAR motif and also weakly methylates the C-termini of both CF Im59 and CF Im68. The results suggest that native—as compared with recombinant—protein substrates may contain additional determinants for methylation by specific PRMTs. A possible involvement of CF Im methylation in the context of RNA export is discussed.  相似文献   
5.
    
Besides its importance as model organism in eukaryotic cell biology, yeast species have also developed into an attractive host for the expression, processing, and secretion of recombinant proteins. Here we investigated foreign protein secretion in four distantly related yeasts (Candida glabrata, Pichia pastoris, Saccharomyces cerevisiae, and Schizosaccharomyces pombe) by using green fluorescent protein (GFP) as a reporter and a viral secretion signal sequence derived from the K28 preprotoxin (pptox), the precursor of the yeast K28 virus toxin. In vivo expression of GFP fused to the N-terminal pptox leader sequence and/or expression of the entire pptox gene was driven either from constitutive (PGK1 and TPI1) or from inducible and/or repressible (GAL1, AOX1, and NMT1) yeast promoters. In each case, GFP entered the secretory pathway of the corresponding host cell; confocal fluorescence microscopy as well as sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western analysis of cell-free culture supernatants confirmed that GFP was efficiently secreted into the culture medium. In addition to the results seen with GFP, the full-length viral pptox was correctly processed in all four yeast genera, leading to the secretion of a biologically active virus toxin. Taken together, our data indicate that the viral K28 pptox signal sequence has the potential for being used as a unique tool in recombinant protein production to ensure efficient protein secretion in yeast.  相似文献   
6.
    
Candida albicans and Candida glabrata account for the majority of candidiasis cases worldwide. Although both species are in the same genus, they differ in key virulence attributes. Within this work, live cell imaging was used to examine the dynamics of neutrophil activation after confrontation with either C. albicans or C. glabrata. Analyses revealed higher phagocytosis rates of C. albicans than C. glabrata that resulted in stronger PMN (polymorphonuclear cells) activation by C. albicans. Furthermore, we observed differences in the secretion of chemokines, indicating chemotactic differences in PMN signalling towards recruitment of further immune cells upon confrontation with Candida spp. Supernatants from co‐incubations of neutrophils with C. glabrata primarily attracted monocytes and increased the phagocytosis of C. glabrata by monocytes. In contrast, PMN activation by C. albicans resulted in recruitment of more neutrophils. Two complex infection models confirmed distinct targeting of immune cell populations by the two Candida spp.: In a human whole blood infection model, C. glabrata was more effectively taken up by monocytes than C. albicans and histopathological analyses of murine model infections confirmed primarily monocytic infiltrates in C. glabrata kidney infection in contrast to PMN‐dominated infiltrates in C. albicans infection. Taken together, our data demonstrate that the human opportunistic fungi C. albicans and C. glabrata are differentially recognized by neutrophils and one outcome of this differential recognition is the preferential uptake of C. glabrata by monocytes.  相似文献   
7.
8.
Insects employ iridoids to deter predatory attacks. Larvae of some Chrysomelina species are capable to produce those cyclopentanoid monoterpenes de novo. The iridoid biosynthesis proceeds via the mevalonate pathway to geranyl diphospate (GDP) subsequently converted into 8-hydroxygeraniol-8-O-beta-D-glucoside followed by the transformation into the defensive compounds. We tested whether the glucoside, its aglycon or geraniol has an impact on the activity of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), the key regulatory enzyme of the mevalonate pathway and also the iridoid biosynthesis. To address the inhibition site of the enzyme, initially a complete cDNA encoding full length HMGR was cloned from Phaedon cochleariae. Its catalytic portion was then heterologously expressed in Escherichia coli. Purification and characterization of the recombinant protein revealed attenuated activity in enzyme assays by 8-hydroxygeraniol whereas no effect has been observed by addition of the glucoside or geraniol. Thus, the catalytic domain is the target for the inhibitor. Homology modeling of the catalytic domain and docking experiments demonstrated binding of 8-hydroxygeraniol to the active site and indicated a competitive inhibition mechanism. Iridoid producing larvae are potentially able to sequester glucosidically bound 8-hydroxygeraniol whose cleavage of the sugar moiety results in 8-hydroxygeraniol. Therefore, HMGR may represent a regulator in maintenance of homeostasis between de novo produced and sequestered intermediates of iridoid metabolism. Furthermore, we demonstrated that HMGR activity is not only diminished in iridoid producers but most likely prevalent within the Chrysomelina subtribe and also within the insecta.  相似文献   
9.
The effects of TEMPO-mediated oxidation, performed with NaClO, a catalytic amount of NaBr, and 2,2′,6,6′-tetramethylpiperidine-1-oxy radical (TEMPO), were studied on lyocell fibers by means of GPC using multiple detection and group-selective fluorescence labeling according to the CCOA and FDAM methodology. The applied method determines functional group content as a sum parameter, as well as functional group profiles in relation to the molecular weight of the cellulose fibers. Both the CHO and COOH profiles, as well as molecular weight alterations, were analyzed. A significant decrease in the average molecular weight was obtained during the first hour of TEMPO-mediated oxidation, but prolonged oxidation time resulted in no strong additional chain scission. Significant amounts of COOH groups were introduced in the high molecular weight fractions by the oxidation with higher concentrations of NaClO (2.42–9.67 mmol NaClO/g fiber) after modification times of 1 h or longer.  相似文献   
10.
Calcineurin inhibitors (CNIs) are immunosuppressive drugs that are used widely to prevent rejection of transplanted organs and to treat autoimmune disease. Hypertension and renal tubule dysfunction, including hyperkalemia, hypercalciuria and acidosis, often complicate their use. These side effects resemble familial hyperkalemic hypertension, a genetic disease characterized by overactivity of the renal sodium chloride cotransporter (NCC) and caused by mutations in genes encoding WNK kinases. We hypothesized that CNIs induce hypertension by stimulating NCC. In wild-type mice, the CNI tacrolimus caused salt-sensitive hypertension and increased the abundance of phosphorylated NCC and the NCC-regulatory kinases WNK3, WNK4 and SPAK. We demonstrated the functional importance of NCC in this response by showing that tacrolimus did not affect blood pressure in NCC-knockout mice, whereas the hypertensive response to tacrolimus was exaggerated in mice overexpressing NCC. Moreover, hydrochlorothiazide, an NCC-blocking drug, reversed tacrolimus-induced hypertension. These observations were extended to humans by showing that kidney transplant recipients treated with tacrolimus had a greater fractional chloride excretion in response to bendroflumethiazide, another NCC-blocking drug, than individuals not treated with tacrolimus; renal NCC abundance was also greater. Together, these findings indicate that tacrolimus-induced chronic hypertension is mediated largely by NCC activation, and suggest that inexpensive and well-tolerated thiazide diuretics may be especially effective in preventing the complications of CNI treatment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号