首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   314篇
  免费   35篇
  2023年   1篇
  2022年   2篇
  2021年   10篇
  2020年   7篇
  2019年   6篇
  2018年   5篇
  2017年   3篇
  2016年   4篇
  2015年   16篇
  2014年   12篇
  2013年   24篇
  2012年   25篇
  2011年   25篇
  2010年   14篇
  2009年   15篇
  2008年   24篇
  2007年   22篇
  2006年   17篇
  2005年   16篇
  2004年   15篇
  2003年   15篇
  2002年   21篇
  2001年   4篇
  2000年   4篇
  1999年   3篇
  1998年   4篇
  1997年   7篇
  1996年   3篇
  1995年   4篇
  1993年   2篇
  1992年   6篇
  1991年   3篇
  1989年   3篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1974年   1篇
排序方式: 共有349条查询结果,搜索用时 15 毫秒
1.
The decision to move towards a mating partner or a food source is essential for life. The mechanisms underlying these behaviors are not well understood. Here, we investigated the role of octopamine – the invertebrate analogue of noradrenaline – in innate olfactory attraction to ethanol. We confirmed that preference is caused via an olfactory stimulus by dissecting the function of the olfactory co-receptor Orco (formally known as OR83b). Orco function is not required for ethanol recognition per se, however it plays a role in context dependent recognition of ethanol. Odor-evoked ethanol preference requires the function of Tbh (Tyramine β hydroxalyse), the rate-limiting enzyme of octopamine synthesis. In addition, neuronal activity in a subset of octopaminergic neurons is necessary for olfactory ethanol preference. Notably, a specific neuronal activation pattern of tyraminergic/octopaminergic neurons elicit preference and is therefore sufficient to induce preference. In contrast, dopamine dependent increase in locomotor activity is not sufficient for olfactory ethanol preference. Consistent with the role of noradrenaline in mammalian drug induced rewards, we provide evidence that in adult Drosophila the octopaminergic neurotransmitter functions as a reinforcer and that the molecular dissection of the innate attraction to ethanol uncovers the basic properties of a response selection system.  相似文献   
2.
Multiple sclerosis, the most common cause of neurological disability in young population after trauma, represents a significant public health burden. Current challenges associated with management of multiple sclerosis (MS) patients stem from the lack of biomarkers that might enable stratification of the different clinical forms of MS and thus prompt treatment for those patients with progressive MS, for whom there is currently no therapy available. In the present work we analyzed a set of thirty different plasma cytokines, chemokines and growth factors present in circulation of 129 MS patients with different clinical forms (relapsing remitting, secondary progressive and primary progressive MS) and 53 healthy controls, across two independent cohorts. The set of plasma analytes was quantified with Luminex xMAP technology and their predictive power regarding clinical outcome was evaluated both individually using ROC curves and in combination using logistic regression analysis. Our results from two independent cohorts of MS patients demonstrate that the divergent clinical and histology-based MS forms are associated with distinct profiles of circulating plasma protein biomarkers, with distinct signatures being composed of chemokines and growth/angiogenic factors. With this work, we propose that an evaluation of a set of 4 circulating biomarkers (HGF, Eotaxin/CCL11, EGF and MIP-1β/CCL4) in MS patients might serve as an effective tool in the diagnosis and more personalized therapeutic targeting of MS patients.  相似文献   
3.
4.
Summary Eight representative recombinant background clones of λEMBL3 were analysed usingKpnI,BamHI,SalI,EcoRI andHindIII digestion. We found that λEMBL3 carries its own left arm in theBamHI cloning site. In this way, recombinant molecules were found to be generated which can grow onEscherichia coli strain NM539. In all cases analysed, the left arm DNA was inserted in a head to tail orientation. Seven clones carried a restoredBamHI site at thecos site-BamHI site connection. In the region where the inserted left arm and the right arm were ligated,BamHI cloning produces a large palindromic sequence consisting of two polylinkers. ThisBamHI site was incompletely cleaved in all cases analysed. We assume that a part of the λ DNA molecule in this region shows a cruciform structure prohibiting recognition or cleavage of this site by restriction endonucleaseBamHI.  相似文献   
5.
v-jun encodes a nuclear protein with enhancer binding properties of AP-1   总被引:35,自引:0,他引:35  
T J Bos  D Bohmann  H Tsuchie  R Tjian  P K Vogt 《Cell》1988,52(5):705-712
  相似文献   
6.
7.
A hybridoma cell was cultivated continuously in a membrane dialysis bioreactor with an integrated radial-flow fixed bed consisting of porous Siran® carriers over a period of 6 weeks. Antibodies accumulated to an average of 100 mg l?1, approx. 10 times more than in fixed bed cultures without dialysis membrane. Serum costs could be reduced about 85% due to an appropriate feeding strategy. Siran® carriers with 3–5 mm diameter showed an advantage compared to those with 1–2 mm diameter. For the 3–5 mm carrier the specific glucose uptake rate and the MAb production rate were constant, if the velocity was between 0.09 mm s?1 and 0.75 mm s?1. At higher velocities cells are washed out of the bed. Furthermore antibody consistency and cell stability were verified in long-term cultivations over a period of 96 days. From an estimation of the antibody concentration reachable with the reactor concept under optimal conditions a concentration 45 times higher compared to axial-flow fixed bed reactors and 11 times higher compared to stirred tank reactors can be expected.  相似文献   
8.
Nonspiking interneurons were investigated in a tethered, walking insect, Carausius morosus, that was able to freely perform walking movements. Experiments were carried out with animals walking on a lightweight, double-wheel treadmill. Although the animal was opened dorsally, the walking system was left intact. Intracellular recordings were obtained from the dorsal posterior neuropil of the mesothoracic ganglion. Nonspiking inter-neurons, in which modulations of the membrane potential were correlated with the walking rhythm, were described physiologically and stained with Lucifer Yellow. Interneurons are demonstrated in which membrane potential oscillations mirror the leg position or show correlation with the motoneuronal activity of the protractor and retractor coxae muscles during walking. Other interneurons showed distinct hyperpolarizations at certain important trigger points in the step cycle, for example, at the extreme posterior position. Through electrical stimulation of single, nonspiking interneurons during walking, the motoneuronal activity in two antagonistic muscles—protractor and retractor coxae—could be reversed and even the movement of the ipsilateral leg could be influenced. The nonspiking interneurons described appear to be important premotor elements involved in walking. They receive, integrate, and process information from different leg proprioceptors and drive groups of leg motoneurons during walking.  相似文献   
9.
Drosophila Jun (D-Jun) is a nuclear component of the receptor tyrosine kinase/Ras signal transduction pathway which triggers photoreceptor differentiation during eye development. Here we show that D-Jun is a substrate for the ERK-related Drosophila MAP kinase Rolled, which has previously been shown to be a part of this pathway. A D-Jun mutant that carries alanines in place of the Rolled phosphorylation sites acts as a dominant suppressor of photoreceptor cell fate if expressed in the eye imaginal disc. In contrast, a mutant in which the phosphorylation sites are replaced by phosphate-mimetic Asp residues, as well as a VP16-D-Jun fusion protein, can promote photoreceptor differentiation. These data implicate Jun phosphorylation in the choice between neuronal and non-neuronal fate during Drosophila eye development.  相似文献   
10.
Local nonspiking interneurons in the thoracic ganglia of insects are important premotor elements in posture control and locomotion. It was investigated whether these interneurons are involved in the central neuronal circuits generating the oscillatory motor output of the leg muscle system during rhythmic motor activity. Intracellular recordings from premotor nonspiking interneurons were made in the isolated and completely deafferented mesothoracic ganglion of the stick insect in preparations exhibiting rhythmic motor activity induced by the muscarinic agonist pilocarpine. All interneurons investigated provided synaptic drive to one or more motoneuron pools supplying the three proximal leg joints, that is, the thoraco-coxal joint, the coxa-trochanteral joint and the femur-tibia joint. During rhythmicity in 83% (n=67) of the recorded interneurons, three different kinds of synaptic oscillations in membrane potential were observed: (1) Oscillations were closely correlated with the activity of motoneuron pools affected; (2) membrane potential oscillations reflected only certain aspects of motoneuronal rhythmicity; and (3) membrane potential oscillations were correlated mainly with the occurrence of spontaneous recurrent patterns (SRP) of activity in the motoneuron pools. In individual interneurons membrane potential oscillations were associated with phase-dependent changes in the neuron's membrane conductance. Artificial changes in the interneurons' membrane potential strongly influenced motor activity. Injecting current pulses into individual interneurons caused a reset of rhythmicity in motoneurons. Furthermore, current injection into interneurons influenced shape and probability of occurrence for SRPs. Among others, identified nonspiking interneurons that are involved in posture control of leg joints were found to exhibit the above properties. From these results, the following conclusions on the role of nonspiking interneurons in the generation of rhythmic motor activity, and thus potentially also during locomotion, emerge: (1) During rhythmic motor activity most nonspiking interneurons receive strong synaptic drive from central rhythm-generating networks; and (2) individual nonspiking interneurons some of which underlie sensory-motor pathways in posture control, are elements of central neuronal networks that generate alternating activity in antagonistic leg motoneuron pools. © 1995 John Wiley & Sons, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号