首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3173篇
  免费   270篇
  2023年   10篇
  2022年   31篇
  2021年   49篇
  2020年   32篇
  2019年   46篇
  2018年   53篇
  2017年   35篇
  2016年   75篇
  2015年   145篇
  2014年   176篇
  2013年   179篇
  2012年   249篇
  2011年   230篇
  2010年   122篇
  2009年   122篇
  2008年   183篇
  2007年   190篇
  2006年   166篇
  2005年   171篇
  2004年   174篇
  2003年   160篇
  2002年   146篇
  2001年   41篇
  2000年   31篇
  1999年   39篇
  1998年   46篇
  1997年   45篇
  1996年   27篇
  1995年   27篇
  1994年   23篇
  1993年   29篇
  1992年   20篇
  1991年   21篇
  1990年   24篇
  1989年   21篇
  1988年   16篇
  1987年   19篇
  1986年   11篇
  1985年   17篇
  1984年   16篇
  1983年   14篇
  1982年   16篇
  1981年   9篇
  1980年   20篇
  1978年   8篇
  1975年   6篇
  1974年   8篇
  1973年   7篇
  1971年   8篇
  1970年   6篇
排序方式: 共有3443条查询结果,搜索用时 296 毫秒
1.

Purpose  

Though the development of biofuel has attracted numerous studies for quantifying potential water demand applying life cycle thinking, the impacts of biofuel water consumption still remain unknown. In this study, we aimed to quantify ecological impact associated with corn-based bioethanol water consumption in Minnesota in responding to different refinery expansion scenarios by applying a life cycle impact assessment method.  相似文献   
2.
A series of in vitro experiments were conducted to assess three fibrolytic enzyme preparations as potential feed additives in equine diets. The three fibrolytic enzyme preparations were a concentrated cellulase (E1), an acid cellulase (E2) and a concentrated xylanase (E3). The enzymes were evaluated on their ability to modify the cell wall fraction of high-temperature dried lucerne (HTL) under various experimental conditions including differences in temperature, pH, incubation period, substrate levels and particle size to enable selection of the enzyme preparation most effective in the hydrolysis of lucerne. Results showed enzyme activities (as measured by reducing sugar assays) to be greatest at 50 °C, pH 5 and over an incubation period of greater than 20 h. E1 exhibited the greatest effect on total monosaccharide release from the HTL compared to E2 and E3. Moreover, dry matter (DM) and total non-starch polysaccharide (TNSP) losses were also greater in HTL treated with E1 compared to E2 and E3. Therefore, since the cell wall fraction of HTL contained substantial amounts of cellulose, the enzyme with the highest cellulase activity (Enzyme 1) was most effective in hydrolysing the cell walls of HTL. Consequently, it would appear that the application of exogenous fibrolytic enzyme preparations to forages requires the chemical characterisation of the target forage to enable selection of enzymes that are (a) most suitable to degrade the cell wall components of the candidate forage and (b) effective under field conditions.  相似文献   
3.
Compelling evidence suggests that low-density lipoprotein (LDL) is oxidized by cells within the arterial intima and that, once oxidized, it is profoundly atherogenic. The precise mechanism(s) by which cells promote the oxidation of LDL in vivo are not known; in vitro, however, oxidation of LDL can be enhanced by a number of differing mechanisms, including reaction with free and protein-bound metal ions, thiols, reactive oxygen species, lipoxygenase, myeloperoxidase and peroxynitrite. This review is concerned with the mechanisms by which cells enhance the oxidation of LDL in the presence of transition metals; in particular, the regulation, pro- and anti-oxidant consequences, and mechanism of action of cellular thiol production are examined, and contrasted with thiol-independent oxidation of LDL in the presence of transition metals.  相似文献   
4.
5.
6.
7.
Transecting the axons of neurons in the adult superior cervical ganglion (SCG; axotomy) results in the survival of most postganglionic neurons, the influx of circulating monocytes, proliferation of satellite cells, and changes in neuronal gene expression. In contrast, transecting the afferent input to the SCG (decentralization) results in nerve terminal degeneration and elicits a different pattern of gene expression. We examined the effects of decentralization on macrophages in the SCG and compared the results to those previously obtained after axotomy. Monoclonal antibodies were used to identify infiltrating (ED1+) and resident (ED2+) macrophages, as well as macrophages expressing MHC class II molecules (OX6+). Normal ganglia contained ED2+ cells and OX6+ cells, but few infiltrating macrophages. After decentralization, the number of infiltrating ED1+ cells increased in the SCG to a density about twofold greater than that previously seen after axotomy. Both the densities of ED2+ and OX6+ cells were essentially unchanged after decentralization, though a large increase in OX6+ cells occurred after axotomy. Proliferation among the ganglion's total non‐neuronal cell population was examined and found to increase about twofold after decentralization and about fourfold after axotomy. Double‐labeling experiments indicated that some of these proliferating cells were macrophages. After both surgical procedures, the percentage of proliferating ED2+ macrophages increased, while neither procedure altered the proliferation of ED1+ macrophages. Axotomy, though not decentralization, increased the proliferation of OX6+ cells. Future studies must address what role(s) infiltrating and/or resident macrophages play in regions of decentralized and axotomized neurons and, if both are involved, whether they play distinct roles. © 2002 Wiley Periodicals, Inc. J Neurobiol 53: 68–79, 2002  相似文献   
8.
9.
10.
The rates of uptake by Alteromonas haloplanktis of 19 metabolizable compounds and by V. fischeri of 16 of 17 metabolizable compounds were negligible in the absence of added alkali-metal cations but rapid in the presence of Na. Only d-glucose uptake by V. fischeri occurred at a reasonable rate in the absence of alkali-metal cations, although the rate was further increased by added Na, K, or Li. Quantitative requirements for Na for the uptake of 11 metabolites by A. haloplanktis and of 6 metabolites by V. fischeri and the characteristics of the Na response at constant osmotic pressure varied with each metabolite and were different from the Na effects on the energy sources used. Li stimulated transport of some metabolites in the presence of suboptimal Na concentrations and for a few replaced Na for transport but functioned less effectively. K had a small capacity to stimulate lysine transport. The rate of transport of most of the compounds increased to a maximum at 50 to 300 mM Na, depending on the metabolite, and then decreased as the Na concentration was further increased. For a few metabolites, the rate of transport continued to increase in a biphasic manner as the Na concentration was increased to 500 mM. Concentrations of choline chloride equimolar to inhibitory concentrations of NaCl were either not inhibitory or appreciably less inhibitory than those of NaCl. All metabolites examined accumulated inside the cells against a gradient of unchanged metabolite in the presence of Na, even though some were very rapidly metabolized. The transport of l-alanine, succinate, and d-galactose into A. haloplanktis and of l-alanine and succinate into V. fischeri was inhibited essentially completely by the uncoupler 3,5,3',4'-tetrachlorosalicylanilide. Glucose uptake by V. fischeri was inhibited partially by 3,5,3',4'-tetrachlorosalicylanilide and also by arsenate and iodoacetate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号