首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   913篇
  免费   40篇
  953篇
  2023年   6篇
  2021年   21篇
  2019年   11篇
  2018年   7篇
  2017年   11篇
  2016年   21篇
  2015年   36篇
  2014年   49篇
  2013年   47篇
  2012年   57篇
  2011年   61篇
  2010年   34篇
  2009年   31篇
  2008年   51篇
  2007年   47篇
  2006年   38篇
  2005年   45篇
  2004年   40篇
  2003年   39篇
  2002年   44篇
  2001年   12篇
  2000年   17篇
  1999年   13篇
  1998年   9篇
  1997年   9篇
  1996年   13篇
  1995年   11篇
  1994年   7篇
  1993年   6篇
  1992年   7篇
  1990年   10篇
  1988年   5篇
  1987年   4篇
  1986年   10篇
  1985年   6篇
  1984年   7篇
  1983年   5篇
  1980年   5篇
  1978年   4篇
  1977年   4篇
  1976年   6篇
  1975年   4篇
  1973年   5篇
  1971年   5篇
  1969年   3篇
  1968年   5篇
  1967年   6篇
  1965年   5篇
  1963年   5篇
  1949年   4篇
排序方式: 共有953条查询结果,搜索用时 15 毫秒
1.
Zusammenfassung In der Frucht vonPoncirus trifoliata liegen in der Außenschale Drüsenzellkomplexe, die ein monoterpenreiches ätherisches Öl mit geringem Anteil an Sesquiterpenen und O-haltigen Substanzen produzieren. Ähnlich aussehende Exkretzellkomplexe aus den Saftschläuchen enthalten hauptsächlich Sesquiterpenkohlenwasserstoffe (STKW) und O-haltige Komponenten und sehr wenig Monoterpenkohlenwasserstoffe (MTKW). Im Schalenöl konnten nach gaschromatographischer Trennung mit Hilfe der Massenspektrometrie 19 Komponenten identifiziert werden, im Saftschlauchöl 25.Elektronenmikroskopische Aufnahmen der jüngsten Drüsenzellen beider Drüsenkomplexe lassen erkennen, daß beide Terpenklassen wahrscheinlich hauptsächlich bzw. ausschließlich plastidär entstehen.Exogen angebotenes14CO2 wird zunächst überwiegend in die MTKW eingebaut, erst später nimmt die Markierung der STKW und O-haltigen Komponenten stark zu. Über den Ferntransportweg angebotenes14C-Leucin führt anfangs zu einer starken Markierung der STKW und O-haltigen Komponenten, erst später verschiebt sich der Einbau etwas mehr in Richtung MTKW. Als Hauptursache für den differenten Einbau wird das Vorhandensein zweier Typen von Drüsenzellkomplexen mit unterschiedlichen Syntheseleistungen angesehen.Die aus dem14CO2 in der Außenrinde gebildeten Assimilate werden zuerst in das MTKW-reiche Öl der Schalenexkretbehälter eingebaut. Die überwiegend STKW erzeugenden Saftschlauchbehälter werden erst später beliefert. Beim Leucinangebot über die Fruchtstiele scheint es gerade umgekehrt zu verlaufen. Die aufeinanderfolgenden Maxima der Ölproduktion in den beiden Drüsenzellkomplex-Typen und die Änderung des Komponentenspektrums ihres ätherischen Öls im Verlauf der Vegetationsperiode tragen ebenfalls zu einem je nach Jahreszeit unterschiedlichen Einbau in die MTKW und STKW bei.
Compartmentation of mono- and sesqui-terpene biosynthesis of the essential oil inPoncirus trifoliata
Summary The fruit ofPoncirus trifoliata shows glandular cell complexes in the exocarp, which produce a volatile oil rich in monoterpenes but poor in sesquiterpenes and oxigenated compounds. The juice vesicles of the endocarp possess similar cell complexes mainly containing sesquiterpenes and oxigenated compounds, whereas monoterpenes only occur in small amounts. By the use of combined gas chromatography-mass spectrometry 19 components of the rind oil and 15 compounds of the endocarp oil could be identified.As demonstrated by electron microscopy the terpenes most probably are synthesized predominantly, if not exclusively in plastids. As shown by gasradiochromatography radioactive precursors (14CO2 and14C-leucine) are incorporated into mono- and sesqui-terpenes to a different extent.This is due to two gland types producing essential oils of different composition with regard to their mono- and sesqui-terpene percentage. In fruit development the exocarp glands differentiate earlier than the endocarp glands do. The activity of exogenously applied14CO2 first reaches the peripheral glands and later on appears in the interior glands. Depending upon the growth season, labelled leucine transported by the conducting tissues from lower plant parts leads to a high specific activity of the sesqui-terpenes and oxigenated compounds. It could be argued that in this instance the glands of the pulp are better provided with precursors than the exocarp glands. The successive maxima of essential oil production in both glandular complexes, and the changes in the concentration of individual oil constituents during the ontogeny of the fruit also contribute to different incorporation ratios of radioactive precursors into mono- and sesqui-terpenes.
  相似文献   
2.
A bacterium strain BERT, which utilizes primary long-chain alkylamines as nitrogen, carbon and energy source, was isolated from activated sludge. This rod-shaped motile, Gram-negative strain was identified as a Pseudomonas sp. The substrate spectrum of this Pseudomonas strain BERT includes primary alkylamines with alkyl chains ranging from C3 to C18, and dodecyl-1,3-diaminopropane. Amines with alkyl chains ranging from 8 to 14 carbons were the preferred substrates. Growth on dodecanal, dodecanoic acid and acetic acid and simultaneous adaptation studies indicated that this bacterium initiates degradation through a Calkyl–N cleavage. The cleavage of alkylamines to the respective alkanals in Pseudomonas strain BERT is mediated by a PMS-dependent alkylamine dehydrogenase. This alkylamine dehydrogenase produces stoichiometric amounts of ammonium from octylamine. The PMS-dependent alkylamine was found to oxidize a broad range of long-chain alkylamines. PMS-dependent long-chain aldehyde dehydrogenase activity was also detected in cell-free extract of Pseudomonas strain BERT grown on octylamine. The proposed pathway for the oxidation of alkylamine in strain BERT proceeds from alkylamine to alkanal, and then to the fatty acid.  相似文献   
3.
A multicenter study was conducted with the objective to evaluate a reverse line blot (RLB) assay to detect resistance to rifampin (RIF), isoniazid (INH), streptomycin (STR), and ethambutol (EMB) in clinical isolates of Mycobacterium tuberculosis. Oligonucleotides specific for wild type and mutant (drug resistance linked) alleles of the selected codons in the genes rpoB, inhA, ahpC, rpsL, rrs, embB, were immobilized on a nylon membrane. The RLB assay conditions were optimized following analysis of DNA samples with known sequences of the targeted genes. For validation of the method at different geographical locations, the membranes were sent to seven laboratories in six countries representing the regions with high burdens of multudrug-resistant tuberculosis. The reproducibility of the assay for detection of rpoB genotypes was initially evaluated on a blinded set of twenty reference DNA samples with known allele types and overall concordant results were obtained. Further mutation analysis was performed by each laboratory on the local strains. Upon RLB analysis of 315 clinical isolates from different countries, 132 (85.2%) of 155 RIF-resistant and 28 (51.0%) of 55 EMB-resistant isolates were correctly identified, showing applicability of the assay when targeting the rpoB hot-spot region and embB306. Mutations in the inhA and ahpC promoter regions, conferring resistance to INH, were successfully identified in respectively 16.9% and 13.2% of INH-resistant strains. Likewise, mutations in rrs513 and rpsL88 that confer resistance to STR were identified in respectively 15.1% and 10.7% of STR-resistant strains. It should be mentioned that mutation analysis of the above targets usually requires rather costly DNA sequencing to which the proposed RLB assay presents rapid and inexpensive alternative. Furthermore, the proposed method requires the same simple equipment as that used for spoligotyping and permits simultaneous analysis of up to 40 samples. This technique is a first attempt to combine different targets in a single assay for prediction of antituberculosis drugs resistance. It is open to further development as it allows easy incorporation of new probes for detection of mutations in other genes associated with resistance to second-line (e.g., fluoroquinolones) and new antituberculosis compounds.  相似文献   
4.

Background

The pulmonary microcirculation is the chief regulatory site for resistance in the pulmonary circuit. Despite pulmonary microvascular dysfunction being implicated in the pathogenesis of several pulmonary vascular conditions, there are currently no techniques for the specific assessment of pulmonary microvascular integrity in humans. Peak hyperemic flow assessment using thermodilution-derived mean transit-time (Tmn) facilitate accurate coronary microcirculatory evaluation, but remain unvalidated in the lung circulation. Using a high primate model, we aimed to explore the use of Tmn as a surrogate of pulmonary blood flow for the purpose of measuring the novel indices Pulmonary Flow Reserve [PFR = (maximum hyperemic)/(basal flow)] and Pulmonary Index of Microcirculatory Resistance [PIMR = (maximum hyperemic distal pulmonary artery pressure)×(maximum hyperemic Tmn)]. Ultimately, we aimed to investigate the effect of progressive pulmonary microvascular obstruction on PFR and PIMR.

Methods and Results

Temperature- and pressure-sensor guidewires (TPSG) were placed in segmental pulmonary arteries (SPA) of 13 baboons and intravascular temperature measured. Tmn and hemodynamics were recorded at rest and following intra-SPA administration of the vasodilator agents adenosine (10–400 µg/kg/min) and papaverine (3–24 mg). Temperature did not vary with intra-SPA sensor position (0.010±0.009 v 0.010±0.009°C; distal v proximal; p = 0.1), supporting Tmn use in lung for the purpose of hemodynamic indices derivation. Adenosine (to 200 µg/kg/min) & papaverine (to 24 mg) induced dose-dependent flow augmentations (40±7% & 35±13% Tmn reductions v baseline, respectively; p<0.0001). PFR and PIMR were then calculated before and after progressive administration of ceramic microspheres into the SPA. Cumulative microsphere doses progressively reduced PFR (1.41±0.06, 1.26±0.19, 1.17±0.07 & 1.01±0.03; for 0, 104, 105 & 106 microspheres; p = 0.009) and increased PIMR (5.7±0.6, 6.3±1.0, 6.8±0.6 & 7.6±0.6 mmHg.sec; p = 0.0048).

Conclusions

Thermodilution-derived mean transit time can be accurately and reproducibly measured in the pulmonary circulation using TPSG. Mean transit time-derived PFR and PIMR can be assessed using a TPSG and adenosine or papaverine as hyperemic agents. These novel indices detect progressive pulmonary microvascular obstruction and thus have with a potential role for pulmonary microcirculatory assessment in humans.  相似文献   
5.
6.
    
Host-associated microbes influence host health and function and can be a first line of defence against infections. While research increasingly shows that terrestrial plant microbiomes contribute to bacterial, fungal, and oomycete disease resistance, no comparable experimental work has investigated marine plant microbiomes or more diverse disease agents. We test the hypothesis that the eelgrass (Zostera marina) leaf microbiome increases resistance to seagrass wasting disease. From field eelgrass with paired diseased and asymptomatic tissue, 16S rRNA gene amplicon sequencing revealed that bacterial composition and richness varied markedly between diseased and asymptomatic tissue in one of the two years. This suggests that the influence of disease on eelgrass microbial communities may vary with environmental conditions. We next experimentally reduced the eelgrass microbiome with antibiotics and bleach, then inoculated plants with Labyrinthula zosterae, the causative agent of wasting disease. We detected significantly higher disease severity in eelgrass with a native microbiome than an experimentally reduced microbiome. Our results over multiple experiments do not support a protective role of the eelgrass microbiome against L. zosterae. Further studies of these marine host–microbe–pathogen relationships may continue to show new relationships between plant microbiomes and diseases.  相似文献   
7.
Human-mediated dispersal has reshaped distribution patterns and biogeographic relationships for many taxa. Long-distance and over-water dispersal were historically rare events for most species, but now human activities can move organisms quickly over long distances to new places. A potential consequence of human-mediated dispersal is the eventual reintroduction of individuals from an invasive population back into their native range; a dimension of biological invasion termed “cryptic back-introduction.” We investigated whether this phenomenon was occurring in the Cayman Islands where brown anole lizards (Anolis sagrei) with red dewlaps (i.e., throat fans), either native to Little Cayman or invasive on Grand Cayman, have been found on Cayman Brac where the native A. sagrei have yellow dewlaps. Our analysis of microsatellite data shows strong population-genetic structure among the three Cayman Islands, but also evidence for non-equilibrium. We found some instances of intermediate multilocus genotypes (possibly 3–9% of individuals), particularly between Grand Cayman and Cayman Brac. Furthermore, analysis of dewlap reflectance data classified six males sampled on Cayman Brac as having red dewlaps similar to lizards from Grand Cayman and Little Cayman. Lastly, one individual from Cayman Brac had an intermediate microsatellite genotype, a red dewlap, and a mtDNA haplotype from Grand Cayman. This mismatch among genetic and phenotypic data strongly suggests that invasive A. sagrei from Grand Cayman are interbreeding with native A. sagrei on Cayman Brac. To our knowledge, this is the first evidence of cryptic back-introduction. Although we demonstrate this phenomenon is occurring in the Cayman Islands, assessing its frequency there and prevalence in other systems may prove difficult due to the need for genetic data in most instances. Cryptic back-introductions may eventually provide some insight into how lineages are changed by the invasion process and may be an underappreciated way in which invasive species impact native biodiversity.  相似文献   
8.
Actin binding proteins control actin assembly and disassembly by altering the critical concentration and by changing the kinetics of polymerization. All of these control mechanisms in some way or the other make use of the energy of hydrolysis of actin-bound ATP. Capping of barbed filament ends increases the critical concentration as long as ATP hydrolysis maintains a difference in the actin monomer binding constants of the two ends. A further increase in the critical concentration on adding a second cap, tropomodulin, to the other, pointed filament end also requires ATP hydrolysis as described by the model presented here. Changes in the critical concentration are amplified into much larger changes of the monomer pool by actin sequestering proteins, provided their actin binding equilibrium constants fall within a relatively narrow range around the values for the two critical concentrations of actin. Cofilin greatly speeds up treadmilling, which requires ATP hydroysis, by increasing the rate constant of depolymerization. Profilin increases the rate of elongation at the barbed filament end, coupled to a lowering of the critical concentration, only if ATP hydrolysis makes profilin binding to the barbed end independent of its binding constant for actin monomers.  相似文献   
9.
Wegener, Warner S. (Albert Einstein Medical Center, Philadelphia, Pa.), Henry C. Reeves, and Samuel J. Ajl. Heterogeneity of the glyoxylate-condensing enzymes. J. Bacteriol. 90:594-598. 1965.-Evidence is presented that the enzymatic condensations of glyoxylate with acetyl-CoA (malate synthase), propionyl-CoA (alpha-hydroxyglutarate synthase), butyryl-CoA (beta-ethylmalate synthase), and valeryl-CoA (beta-n-propylmalate synthase) are catalyzed by different enzymes. The possibility that these activities resulted from a single enzyme possessing a broad fatty acid acyl-CoA substrate specificity was ruled out. The latter was suggested by the fact that cells grown on a number of short-chain fatty acids exhibited all the above activities. The conclusion that these reactions are catalyzed by different enzymes is based on the following considerations: (i) the enzymes can be differentially inactivated by heat; (ii) under various growth conditions, where all the condensing enzymes are present, their respective activities do not show a constant ratio, as would be expected if they were catalyzed by a single enzyme; and (iii) under appropriate growth conditions, one or more of these enzymes has been shown to be present to the exclusion of others.  相似文献   
10.
Trehalose is the main haemolymph sugar in many insect species. To be utilized trehalose must be hydrolysed into its glucose units by trehalase (EC 3.2.1.28). Inhibitors of trehalase have attracted interest as possible pesticides and tools for studying the regulation of trehalose metabolism in insects. To make full use of these inhibitors requires knowledge of their fate and effects in vivo. To this end we have measured trehazolin in locusts using a method based on the specific inhibition of a trehalase preparation. After injection of 20 μg, trehazolin decreased in haemolymph with a half-life of 2.6 days and after 10 days almost 95% had disappeared. Trehazolin did not reach the intracellular water space of locust tissues, but appeared with full inhibitory potency in locust faeces, suggesting that it was not metabolized, but quantitatively eliminated via the gut. Haemolymph trehalose increased transiently upon trehazolin injection, it was maximal after 3 days, then decreased and reached control level after 10 days. Inhibition of flight muscle trehalase by trehazolin was prolonged and still conspicuous 21 days post injection, suggesting that trehazolin inhibits trehalase activity irreversibly in vivo and that recovery requires de novo enzyme synthesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号