首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2012年   2篇
  2011年   3篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
  2001年   2篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
2.
Protein tyrosine phosphatase 1B (PTP1B) dephosphorylates receptors tyrosine kinase and acts as a molecular brake on insulin signaling pathway. Conditions of metabolic dysfunction increase PTP1B, when deletion of PTP1B protects against metabolic disorders by increasing insulin signaling. Although vascular insulin signaling contributes to the control of glucose disposal, little is known regarding the direct role of PTP1B in the control of endothelial function. We hypothesized that metabolic dysfunctions increase PTP1B expression in endothelial cells and that PTP1B deletion prevents endothelial dysfunction in situation of diminished insulin secretion. Type I diabetes (T1DM) was induced in wild-type (WT) and PTP1B-deficient mice (KO) with streptozotocin (STZ) injection. After 28 days of T1DM, KO mice exhibited a similar reduction in body weight and plasma insulin levels and a comparable increase in glycemia (WT: 384±20 vs. Ko: 432±29 mg/dL), cholesterol and triglycerides, as WT mice. T1DM increased PTP1B expression and impaired endothelial NO-dependent relaxation, in mouse aorta. PTP1B deletion did not affect baseline endothelial function, but preserved endothelium-dependent relaxation, in T1DM mice. NO synthase inhibition with L-NAME abolished endothelial relaxation in control and T1DM WT mice, whereas L-NAME and the cyclooxygenases inhibitor indomethacin were required to abolish endothelium relaxation in T1DM KO mice. PTP1B deletion increased COX-2 expression and PGI2 levels, in mouse aorta and plasma respectively, in T1DM mice. In parallel, simulation of diabetic conditions increased PTP1B expression and knockdown of PTP1B increased COX-2 but not COX-1 expression, in primary human aortic endothelial cells. Taken together these data indicate that deletion of PTP1B protected endothelial function by compensating the reduction in NO bioavailability by increasing COX-2-mediated release of the vasodilator prostanoid PGI2, in T1DM mice.  相似文献   
3.

Background

Several studies have shown that activation of the renin-angiotensin system may lead to hypertension, a major risk factor for the development of chronic kidney disease (CKD). The existing hypertension-induced CDK mouse models are quite fast and consequently away from the human pathology. Thus, there is an urgent need for a mouse model that can be used to delineate the pathogenic process leading to progressive renal disease. The objective of this study was dual: to investigate whether mice overexpressing renin could mimic the kinetics and the physiopathological characteristics of hypertension-induced renal disease and to identify cellular and/or molecular events characterizing the different steps of the progression of CKD.

Methodology/Principal Findings

We used a novel transgenic strain, the RenTg mice harboring a genetically clamped renin transgene. At 3 months, heterozygous mice are hypertensive and slightly albuminuric. The expression of adhesion markers such as vascular cell adhesion molecule-1 and platelet endothelial cell adhesion molecule-1 are increased in the renal vasculature indicating initiation of endothelial dysfunction. At 5 months, perivascular and periglomerular infiltrations of macrophages are observed. These early renal vascular events are followed at 8 months by leukocyte invasion, decreased expression of nephrin, increased expression of KIM-1, a typical protein of tubular cell stress, and of several pro-fibrotic agents of the TGFβ family. At 12 months, mice display characteristic structural alterations of hypertensive renal disease such as glomerular ischemia, glomerulo- and nephroangio-sclerosis, mesangial expansion and tubular dilation.

Conclusions/Significance

The RenTg strain develops CKD progressively. In this model, endothelial dysfunction is an early event preceding the structural and fibrotic alterations which ultimately lead to the development of CKD. This model can provide new insights into the mechanisms of chronic renal failure and help to identify new targets for arresting and/or reversing the development of the disease.  相似文献   
4.
Chronic kidney disease is promoted by a variety of factors that induce chronic inflammation and fibrosis. Inflammation and excessive scaring have been recently associated with disruptions of the gap junction-mediated intercellular communication. Nevertheless, little is known about alterations of the expression of gap junction proteins such as connexin (Cx) 43 and 37 in chronic renal disease. In this study, we investigated the expression of these two Cxs in the hypertensive RenTg mice, the anti-glomerular basement membrane glomerulonephritis, and the unilateral ureteral obstruction models, all leading to the development of chronic kidney disease in mice. Expression of Cx43 was almost negligible in the renal cortex of control mice. In contrast, Cx43 was markedly increased in the endothelium of peritubular and glomerular capillaries of the 3-mo-old RenTg mice, in the glomeruli of mice suffering from glomerulonephritis, and in the tubules after obstructive nephropathy. The Cx43 expression pattern was paralleled closely by that of the adhesion markers such as vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 as well as the inflammatory biomarker monocyte chemoattractant protein-1. In contrast, Cx37 that was abundantly expressed in the renal cortex of healthy mice was markedly decreased in the three experimental models. Interestingly, Cx43+/- mice showed restricted expression of VCAM-1 after 2 wk of obstructive nephropathy. These findings suggest the importance of Cxs as markers of chronic renal disease and indicate that these proteins may participate in the inflammatory process during the development of this pathology.  相似文献   
5.
BackgroundCameroon achieved the elimination target of leprosy in 2000, and has maintained this status ever since. However, a number of health districts in the country continue to report significant numbers of leprosy cases. The aim of this study was to assess the burden of leprosy in Cameroon from 2000 to 2014.MethodsWe obtained and analysed using the new leprosy burden concept of analysis, leprosy surveillance data collected between 2000 and 2014 from the National Leprosy Control Programme.ConclusionThe leprosy prevalence and detection rates as well as the overall leprosy burden in Cameroon have dropped significantly between 2000 and 2014. However, a good number of health districts remain high-leprosy-burdened. The National Leprosy Control Programme should focus efforts on these health districts in the next coming years in order to further reduce the burden of leprosy in the country.  相似文献   
6.
Numerous muscle lineages are formed during myogenesis within both slow- and fast-specific cell groups. In this study, we show that six fast muscle–specific myosin heavy chain genes have unique expression patterns in the zebrafish embryo. The expression of tail-specific myosin heavy chain (fmyhc2.1) requires wnt signaling and is essential for fast muscle organization within the tail. Retinoic acid treatment results in reduced wnt signaling, which leads to loss of the fmyhc2.1 domain. Retinoic acid treatment also results in a shift of muscle identity within two trunk domains defined by expression of fmyhc1.2 and fmyhc1.3 in favor of the anteriormost myosin isoform, fmyhc1.2. In summary, we identify new muscle domains along the anteroposterior axis in the zebrafish that are defined by individual nonoverlapping, differentially regulated expression of myosin heavy chain isoforms.  相似文献   
7.
Studies were conducted to investigate the electroantennographic (EAG) responses of adult female Helicoverpa armigera to a range of known and putative kairomone components. The studies show that at a given dose the EAG responses elicited by a series of straight-chain aliphatic primary alcohols were not dependent on volatility since butan-1-ol and pentan-1-ol elicited EAG responses that were significantly smaller than those elicited by hexan-1-ol. The amplitudes of responses to hexan-1-ol were found to be dose dependent with a dose of 10(-1) μmol at source in a non-volatile solvent eliciting the largest response. Similarly, changes in functionality in a range of C(6) straight-chain aliphatic compounds significantly changed the amplitude of response elicited, with aldehydes eliciting smaller responses than the related primary alcohols and saturated compounds eliciting higher responses than related unsaturated compounds. Of the range of nine host plant-produced terpenoids tested, ocimene and beta-phellandrene elicited the highest responses and of the six aromatic compounds tested phenylacetaldehyde and benzaldehyde elicited the largest responses, at the doses tested. The significance of these findings for analysis of floral odours by gas chromatography linked to electroantennography as a means of identifying kairomone components attractive to H. armigera are discussed.  相似文献   
8.
9.
Tumour hypoxia plays a role in chemoresistance in several human tumours. However, how hyperbaric oxygen leads to chemotherapeutic gain is unclear. This study investigates the relation of reactive oxygen species (ROS) generation with anti-tumoural effect of adriamycin (ADR) on CCRF-CEM cells under hypoxic (2% O2) and normoxic (21% O2) conditions. A new method was used to measure intracellular ROS variations through the fluorescence lifetime of 1-pyrenebutyric acid. At 24 h, ADR, probably via semiquinone radical, enhances ROS levels in normoxic cells compared to hypoxic cells. Long-term studies show that ROS are also generated by a second mechanism related to cell functions perturbation. ADR arrests the cell cycle progression both under hypoxia and normoxia, indicating that oxygen and ROS does not influence the DNA damaging activity of ADR. The findings reveal that moderate improvement of ADR cytotoxicity results from higher ROS formation in normoxic cells, leading to elevated induction of cell death.  相似文献   
10.
Cysteine is the limiting precursor forglutathione synthesis. Because of its low bioavailability, cysteine isgenerally produced from cystine, which may be taken up through twodifferent transporters. The cystine/glutamate antiporter(x system) transports extracellular cystine inexchange for intracellular glutamate. The XAG transportsystem takes up extracellular cystine, glutamate, and aspartate. Bothare sensitive to competition between cystine and glutamate, and excessextracellular glutamate thus inhibits glutathione synthesis, anonexcitotoxic mechanism for glutamate toxicity. We demonstratedpreviously that human macrophages express the glutamate transportersexcitatory amino acid transporter (EAAT)1 and EAAT2 (which do nottransport cystine, X system) and overcomecompetition for the use of cystine transporters. We now showthat macrophages take up cystine through the x andnot the XAG system. We also found that glutamate, although competing with cystine uptake, dose-dependently increases glutathione synthesis. We used inhibitors to demonstrate that this increase ismediated by EAATs. EAAT expression in macrophages thus leads toglutamate-dependent enhancement of glutathione synthesis by providingintracellular glutamate for direct insertion in glutathione and alsofor fueling the intracellular pool of glutamate andtrans-stimulating the cystine/glutamate antiporter.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号