首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   75篇
  免费   2篇
  77篇
  2023年   2篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   4篇
  2015年   4篇
  2014年   2篇
  2013年   6篇
  2012年   10篇
  2011年   9篇
  2010年   3篇
  2009年   3篇
  2008年   6篇
  2007年   1篇
  2006年   6篇
  2005年   6篇
  2004年   3篇
  2003年   4篇
  2002年   5篇
排序方式: 共有77条查询结果,搜索用时 15 毫秒
1.
Glutamate is the main excitatory amino acid, but its presence in the extracellular milieu has deleterious consequences. It may induce excitotoxicity and also compete with cystine for the use of the cystine–glutamate exchanger, blocking glutathione neosynthesis and inducing an oxidative stress-induced cell death. Both mechanisms are critical in the brain where up to 20% of total body oxygen consumption occurs. In normal conditions, the astrocytes ensure that extracellular concentration of glutamate is kept in the micromolar range, thanks to their coexpression of high-affinity glutamate transporters (EAATs) and glutamine synthetase (GS). Their protective function is nevertheless sensitive to situations such as oxidative stress or inflammatory processes. On the other hand, macrophages and microglia do not express EAATs and GS in physiological conditions and are the principal effector cells of brain inflammation. Since the late 1990s, a number of studies have now shown that both microglia and macrophages display inducible EAAT and GS expression, but the precise significance of this still remains poorly understood. Brain macrophages and microglia are sister cells but yet display differences. Both are highly sensitive to their microenvironment and can perform a variety of functions that may oppose each other. However, in the very particular environment of the healthy brain, they are maintained in a repressed state. The aim of this review is to present the current state of knowledge on brain macrophages and microglial cells activation, in order to help clarify their role in the regulation of glutamate under pathological conditions as well as its outcome.  相似文献   
2.
Purpose: Infection with oncogenic human papillomavirus (HPV) and HPV-16 in particular is a leading cause of anogenital neoplasia. High-grade intraepithelial lesions require treatment because of their potential to progress to invasive cancer. Numerous preclinical studies have demonstrated the therapeutic potential of E7-directed vaccination strategies in mice tumour models. In the present study, we tested the immunogenicity of a fusion protein (PD-E7) comprising a mutated HPV-16 E7 linked to the first 108 amino acids of Haemophilus influenzae protein D, formulated in the GlaxoSmithKline Biologicals adjuvant AS02B, in patients bearing oncogenic HPV-positive cervical intraepithelial neoplasia (CIN). Methods: Seven patients, five with a CIN3 and two with a CIN1, received three intramuscular injections of adjuvanted PD-E7 at 2-week intervals. Three additional CIN1 patients received a placebo. CIN3 patients underwent conization 8 weeks postvaccination. Cytokine flow cytometry and ELISA were used to monitor antigen-specific cellular and antibody responses from blood taken before and after vaccine or placebo injection. Results: Some patients had preexisting systemic IFN- CD4+ (1/10) and CD8+ (5/10) responses to PD-E7. Vaccination, not placebo injection, elicited systemic specific immune responses in the majority of the patients. Five vaccinated patients (71%) showed significantly increased IFN- CD8+ cell responses upon PD-E7 stimulation. Two responding patients generated long-term T-cell immunity toward the vaccine antigen and E7 as well as a weak H. influenzae protein D (PD)–directed CD4+ response. All the vaccinated patients, but not the placebo, made significant E7- and PD-specific IgG. Conclusions: The encouraging results obtained from this study performed on a limited number of subjects justify further analysis of the efficacy of the PD-E7/AS02B vaccine in CIN patients.  相似文献   
3.
BACKGROUND: Understanding the mechanisms underlying gene electrotransfer muscle damage can help to design more effective gene electrotransfer strategies for physiological and therapeutical applications. The present study investigates the factors involved in gene electrotransfer associated muscle damage. METHODS: Histochemical analyses were used to determine the extent of transfection efficiency and muscle damage in the Tibialis anterior muscles of Sprague-Dawley male rats after gene electrotransfer. RESULTS: Five days after gene electrotransfer, features of muscle degeneration and regeneration were consistently observed, thus limiting the extent of transfection efficiency. Signs of muscle degeneration/regeneration were no longer evident 21 days after gene electrotransfer except for the presence of central myonuclei. Neither the application of electrical pulses per se nor the extracellular presence of plasmid DNA per se contributed significantly to muscle damage (2.9 +/- 1.0 and 2.1 +/- 0.7% of the whole muscle cross-sectional area, respectively). Gene electrotransfer of a plasmid DNA, which does not support gene expression, increased significantly muscle damage (8.7 +/- 1.2%). When plasmid DNA expression was permitted (gene electrotransfer of pCMV-beta-galactosidase), muscle damage was further increased to 19.7 +/- 4.5%. Optimization of cumulated pulse duration and current intensity dramatically reduced gene electrotransfer associated muscle damage. Finally, mathematical modeling of gene electrotransfer associated muscle damage as a function of the number of electrons delivered to the tissue indicated that pulse length critically determined the extent of muscle damage. CONCLUSION: Our data suggest that neither the extracellular presence of plasmid DNA per se nor the application of electric pulses per se contributes significantly to muscle damage. Gene electrotransfer associated muscle damage mainly arises from the intracellular presence and expression of plasmid DNA.  相似文献   
4.
Once escaped from the quiescence niche, precursor cells interact with stromal components that support their survival, proliferation, and differentiation. We examined interplays between human myogenic precursor cells (mpc) and monocyte/macrophages (MP), the main stromal cell type observed at site of muscle regeneration. mpc selectively and specifically attracted monocytes in vitro after their release from quiescence, chemotaxis declining with differentiation. A DNA macroarray-based strategy identified five chemotactic factors accounting for 77% of chemotaxis: MP-derived chemokine, monocyte chemoattractant protein-1, fractalkine, VEGF, and the urokinase system. MP showed lower constitutive chemotactic activity than mpc, but attracted monocytes much strongly than mpc upon cross-stimulation, suggesting mpc-induced and predominantly MP-supported amplification of monocyte recruitment. Determination of [3H]thymidine incorporation, oligosomal DNA levels and annexin-V binding showed that MP stimulate mpc proliferation by soluble factors, and rescue mpc from apoptosis by direct contacts. We conclude that once activated, mpc, which are located close by capillaries, initiate monocyte recruitment and interplay with MP to amplify chemotaxis and enhance muscle growth.  相似文献   
5.
The human diet depends on very few crops. Current diversity in these crops is the result of a long interaction between farmers and cultivated plants, and their environment. Man largely shaped crop biodiversity from the domestication period 12,000 B.P. to the development of improved varieties during the last century. We illustrate this process through a detailed analysis of the domestication and early diffusion of maize. In smallholder agricultural systems, farmers still have a major impact on crop diversity today. We review several examples of the major impact of man on current diversity. Finally, biodiversity is considered to be an asset for adaptation to current environmental changes. We describe the evolution of pearl millet in West Africa, where average rainfall has decreased over the last forty years. Diversity in cultivated varieties has certainly helped this crop to adapt to climate variation.  相似文献   
6.

Background

MALDI-TOF MS recently emerged as a valuable identification tool for bacteria and yeasts and revolutionized the daily clinical laboratory routine. But it has not been established for routine mould identification. This study aimed to validate a standardized procedure for MALDI-TOF MS-based mould identification in clinical laboratory.

Materials and Methods

First, pre-extraction and extraction procedures were optimized. With this standardized procedure, a 143 mould strains reference spectra library was built. Then, the mould isolates cultured from sequential clinical samples were prospectively subjected to this MALDI-TOF MS based-identification assay. MALDI-TOF MS-based identification was considered correct if it was concordant with the phenotypic identification; otherwise, the gold standard was DNA sequence comparison-based identification.

Results

The optimized procedure comprised a culture on sabouraud-gentamicin-chloramphenicol agar followed by a chemical extraction of the fungal colonies with formic acid and acetonitril. The identification was done using a reference database built with references from at least four culture replicates. For five months, 197 clinical isolates were analyzed; 20 were excluded because they were not identified at the species level. MALDI-TOF MS-based approach correctly identified 87% (154/177) of the isolates analyzed in a routine clinical laboratory activity. It failed in 12% (21/177), whose species were not represented in the reference library. MALDI-TOF MS-based identification was correct in 154 out of the remaining 156 isolates. One Beauveria bassiana was not identified and one Rhizopus oryzae was misidentified as Mucor circinelloides.

Conclusions

This work''s seminal finding is that a standardized procedure can also be used for MALDI-TOF MS-based identification of a wide array of clinically relevant mould species. It thus makes it possible to identify moulds in the routine clinical laboratory setting and opens new avenues for the development of an integrated MALDI-TOF MS-based solution for the identification of any clinically relevant microorganism.  相似文献   
7.
During development, embryonic cells display a large variety of behaviors that lead to the formation of embryonic structures that are frequently transient. Simultaneously, cells progress towards a specific fate. The current challenge for embryologists is to resolve how these two distinct aspects of development co-exist. As cell behaviors (including elementary cellular operations such as motility, adhesiveness, polarization, change in shape, division and death) and their control are much less well understood than the genetic aspects of cell fate determination, there is currently much interest in the study of cell behaviors. This mainly consists of labeling groups of cells or, less frequently, single cells and observing their descendants. In this review, we describe a few techniques for labeling groups of cells and we discuss prospective and retrospective clonal analysis, in particular the LaacZ system, in detail. We examine the information generated by these approaches.  相似文献   
8.
Junction-resolving enzymes are nucleases that exhibit structural selectivity for the four-way (Holliday) junction in DNA. In general, these enzymes both recognize and distort the structure of the junction. New insight into the molecular recognition processes has been provided by two recent co-crystal structures of resolving enzymes bound to four-way DNA junctions in highly contrasting ways. T4 endonuclease VII binds the junction in an open conformation to an approximately flat binding surface whereas T7 endonuclease I envelops the junction, which retains a much more three-dimensional structure. Both proteins make contacts with the DNA backbone over an extensive area in order to generate structural specificity. The comparison highlights the versatility of Holliday junction resolution, and extracts some general principles of recognition.  相似文献   
9.
10.
Resolving enzymes bind highly selectively to four-way DNA junctions, but the mechanism of this structural specificity is poorly understood. In this study, we have explored the role of interactions between the dimeric enzyme and the helical arms of the junction, using junctions with either shortened arms, or circular permutation of arms. We find that DNA-protein contacts in the arms containing the 5' ends of the continuous strands are very important, conferring a significant level of sequence discrimination upon both the choice of conformer and the order of strand cleavage. We have exploited these properties to obtain hydroxyl radical footprinting data on endonuclease I-junction complexes that are not complicated by the presence of alternative conformers, with results that are in good agreement with the arm permutation and shortening experiments. Substitution of phosphate groups at the center of the junction reveals the importance of electrostatic interactions at the point of strand exchange in the complex. Our data show that the form of the complex between endonuclease I and a DNA junction depends on the core of the junction and on interactions with the first six base-pairs of the arms containing the 5' ends of the continuous strands.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号