全文获取类型
收费全文 | 359篇 |
免费 | 24篇 |
专业分类
383篇 |
出版年
2024年 | 1篇 |
2023年 | 4篇 |
2022年 | 7篇 |
2021年 | 10篇 |
2020年 | 3篇 |
2019年 | 6篇 |
2018年 | 8篇 |
2017年 | 4篇 |
2016年 | 11篇 |
2015年 | 18篇 |
2014年 | 20篇 |
2013年 | 24篇 |
2012年 | 22篇 |
2011年 | 26篇 |
2010年 | 22篇 |
2009年 | 18篇 |
2008年 | 20篇 |
2007年 | 18篇 |
2006年 | 28篇 |
2005年 | 20篇 |
2004年 | 24篇 |
2003年 | 11篇 |
2002年 | 11篇 |
2001年 | 4篇 |
2000年 | 2篇 |
1999年 | 6篇 |
1998年 | 4篇 |
1997年 | 1篇 |
1996年 | 2篇 |
1994年 | 2篇 |
1992年 | 3篇 |
1991年 | 4篇 |
1990年 | 4篇 |
1989年 | 2篇 |
1988年 | 3篇 |
1987年 | 2篇 |
1986年 | 4篇 |
1985年 | 1篇 |
1984年 | 1篇 |
1977年 | 1篇 |
1975年 | 1篇 |
排序方式: 共有383条查询结果,搜索用时 15 毫秒
1.
Francisella tularensis is a highly virulent bacterium responsible for the zoonotic disease tularemia. It is a facultative intracellular pathogen that replicates in the cytoplasm of host cells, particularly in macrophages. Here we show that F. tularensis live vaccine strain (LVS) expresses a novel small RNA (sRNA), which modulates the virulence capacities of the bacterium. When this sRNA, designated FtrC (for Francisella tularensisRNA C), is expressed at high levels, F. tularensis replicates in macrophages less efficiently than the wild-type parent strain. Similarly, high expression of FtrC reduces the number of viable bacteria recovered from the spleen and liver of infected mice. Our data demonstrate that expression of gene FTL_1293 is regulated by FtrC. Furthermore, we show by in vitro gel shift assays that FtrC interacts specifically with FTL_1293 mRNA and that this happens independently of the RNA chaperone Hfq. Remarkably, FtrC interacts only with full-length FTL_1293 mRNA. These results, combined with a bioinformatic analysis, indicate that FtrC interacts with the central region of the mRNA and hence does not act by sterically hindering access of the ribosome to the mRNA. We further show that gene FTL_1293 is not required for F. tularensis virulence in vitro or in vivo, which indicates that another unidentified FtrC target modulates the virulence capacity of the bacterium. 相似文献
2.
Lucy A. Howey Emily R. Tolentino Yannis P. Papastamatiou Edward J. Brooks Debra L. Abercrombie Yuuki Y. Watanabe Sean Williams Annabelle Brooks Demian D. Chapman Lance K.B. Jordan 《Ecology and evolution》2016,6(15):5290-5304
Comprehension of ecological processes in marine animals requires information regarding dynamic vertical habitat use. While many pelagic predators primarily associate with epipelagic waters, some species routinely dive beyond the deep scattering layer. Actuation for exploiting these aphotic habitats remains largely unknown. Recent telemetry data from oceanic whitetip sharks (Carcharhinus longimanus) in the Atlantic show a strong association with warm waters (>20°C) less than 200 m. Yet, individuals regularly exhibit excursions into the meso‐ and bathypelagic zone. In order to examine deep‐diving behavior in oceanic whitetip sharks, we physically recovered 16 pop‐up satellite archival tags and analyzed the high‐resolution depth and temperature data. Diving behavior was evaluated in the context of plausible functional behavior hypotheses including interactive behaviors, energy conservation, thermoregulation, navigation, and foraging. Mesopelagic excursions (n = 610) occurred throughout the entire migratory circuit in all individuals, with no indication of site specificity. Six depth‐versus‐time descent and ascent profiles were identified. Descent profile shapes showed little association with examined environmental variables. Contrastingly, ascent profile shapes were related to environmental factors and appear to represent unique behavioral responses to abiotic conditions present at the dive apex. However, environmental conditions may not be the sole factors influencing ascents, as ascent mode may be linked to intentional behaviors. While dive functionality remains unconfirmed, our study suggests that mesopelagic excursions relate to active foraging behavior or navigation. Dive timing, prey constituents, and dive shape support foraging as the most viable hypothesis for mesopelagic excursions, indicating that the oceanic whitetip shark may regularly survey extreme environments (deep depths, low temperatures) as a foraging strategy. At the apex of these deep‐water excursions, sharks exhibit a variable behavioral response, perhaps, indicating the presence or absence of prey. 相似文献
3.
Aït-Aïssa S Billaudel B Poulletier de Gannes F Ruffié G Duleu S Hurtier A Haro E Taxile M Athané A Geffard M Wu T Wiart J Bodet D Veyret B Lagroye I 《Bioelectromagnetics》2012,33(5):410-420
An experimental approach was used to assess immunological biomarkers in the sera of young rats exposed in utero and postnatal to non-ionizing radiofrequency fields. Pregnant rats were exposed free-running, 2 h/day and 5 days/week to a 2.45 GHz Wi-Fi signal in a reverberation chamber at whole-body specific absorption rates (SAR) of 0, 0.08, 0.4, and 4 W/kg (with 10, 10, 12, and 9 rats, respectively), while cage control rats were kept in the animal facility (11 rats). Dams were exposed from days 6 to 21 of gestation and then three newborns per litter were further exposed from birth to day 35 postnatal. On day 35 after birth, all pups were sacrificed and sera collected. The screening of sera for antibodies directed against 15 different antigens related to damage and/or pathological markers was conducted using enzyme-linked immunosorbent assay (ELISA). No change in humoral response of young pups was observed, regardless of the types of biomarker and SAR levels. This study also provided some data on gestational outcome following in utero exposure to Wi-Fi signals. Mass evaluation of dams and pups and the number of pups per litter was monitored, and the genital tracts of young rats were observed for abnormalities by measuring anogenital distance. Under these experimental conditions, our observations suggest a lack of adverse effects of Wi-Fi exposure on delivery and general condition of the animals. 相似文献
4.
Reaux-Le Goazigo A Alvear-Perez R Zizzari P Epelbaum J Bluet-Pajot MT Llorens-Cortes C 《American journal of physiology. Endocrinology and metabolism》2007,292(1):E7-15
Apelin is a bioactive peptide recently identified as the endogenous ligand of the human orphan G protein-coupled receptor APJ. The presence of apelin-immunoreactive nerve fibers, together with the detection of apelin receptor mRNA in the parvocellular part of the paraventricular nucleus and the stimulatory action of apelin on corticotropin-releasing hormone release, indicate that apelin modulates adrenocorticotropin (ACTH) release via an indirect action on the hypothalamus. However, a direct action of apelin in the anterior pituitary cannot be excluded. Here, we provided evidence for the existence of an apelinergic system within the adult male rat pituitary gland. Double immunofluorescence staining indicated that apelin is highly coexpressed in the anterior pituitary, mainly in corticotrophs (96.5 +/- 0.3%) and to a much lower extent in somatotropes (3.2 +/- 0.2%). Using in situ hybridization combined with immunohistochemistry, a high expression of apelin receptor mRNA was also found in corticotrophs, suggesting a local interaction between apelin and ACTH. In an ex vivo perifusion system of anterior pituitaries, apelin 17 (K17F, 10(-6) M) significantly increased basal ACTH release by 41%, whereas apelin 10 (R10F, 10(-6) M), an inactive apelin fragment, was ineffective. In addition, K17F but not R10F induced a dose-dependent increase in K(+)-evoked ACTH release, with maximal increase being observed for a 10(-6) M concentration. Taken together, these data outline the potential role of apelin as an autocrine/paracrine-acting peptide on ACTH release and provide morphological and neuroendocrine basis for further studies that explore the physiological role of apelin in the regulation of anterior pituitary functions. 相似文献
5.
Blanchard B Nurisso A Hollville E Tétaud C Wiels J Pokorná M Wimmerová M Varrot A Imberty A 《Journal of molecular biology》2008,383(4):837-853
The opportunistic pathogen Pseudomonas aeruginosa contains several carbohydrate-binding proteins, among which is the P. aeruginosa lectin I (PA-IL), which displays affinity for alpha-galactosylated glycans. Glycan arrays were screened and demonstrated stronger binding of PA-IL toward alphaGal1-4betaGal-terminating structures and weaker binding to alphaGal1-3betaGal ones in order to determine which human glycoconjugates could play a role in the carbohydrate-mediated adhesion of the bacteria. This was confirmed in vivo by testing the binding of the lectin to Burkitt lymphoma cells that present large amounts of globotriaosylceramide antigen Gb3/CD77/P(k). Trisaccharide moieties of Gb3 (alphaGal1-4betaGal1-4Glc) and isoglobotriaosylceramide (alphaGal1-3betaGal1-4Glc) were tested by titration microcalorimetry, and both displayed similar affinity to PA-IL in solution. The crystal structure of PA-IL complexed to alphaGal1-3betaGal1-4Glc trisaccharide has been solved at 1.9-A resolution and revealed how the second galactose residue makes specific contacts with the protein surface. Molecular modeling studies were performed in order to compare the binding mode of PA-IL toward alphaGal1-3Gal with that toward alphaGal1-4Gal. Docking studies demonstrated that alphaGal1-4Gal creates another network of contacts for achieving a very similar affinity, and 10-ns molecular dynamics in explicit water allowed for analyzing the flexibility of each disaccharide ligand in the protein binding site. The higher affinity observed for binding to Gb3 epitope, both in vivo and on glycan array, is likely related to the presentation effect of the oligosaccharide on a surface, since only the Gb3 glycosphingolipid geometry is fully compatible with parallel insertion of neighboring trisaccharide heads in two binding sites of the same tetramer of PA-IL. 相似文献
6.
Khaled Alkhuder Karin L. Meibom Iharilalao Dubail Marion Dupuis Alain Charbit 《PLoS pathogens》2009,5(1)
Francisella tularensis is a highly infectious bacterium causing the zoonotic disease tularemia. Its ability to multiply and survive in macrophages is critical for its virulence. By screening a bank of HimarFT transposon mutants of the F. tularensis live vaccine strain (LVS) to isolate intracellular growth-deficient mutants, we selected one mutant in a gene encoding a putative γ-glutamyl transpeptidase (GGT). This gene (FTL_0766) was hence designated ggt. The mutant strain showed impaired intracellular multiplication and was strongly attenuated for virulence in mice. Here we present evidence that the GGT activity of F. tularensis allows utilization of glutathione (GSH, γ-glutamyl-cysteinyl-glycine) and γ-glutamyl-cysteine dipeptide as cysteine sources to ensure intracellular growth. This is the first demonstration of the essential role of a nutrient acquisition system in the intracellular multiplication of F. tularensis. GSH is the most abundant source of cysteine in the host cytosol. Thus, the capacity this intracellular bacterial pathogen has evolved to utilize the available GSH, as a source of cysteine in the host cytosol, constitutes a paradigm of bacteria–host adaptation. 相似文献
7.
In non-excitable cells, the inositol 1,4,5-trisphosphate receptor (IP3R) is an intracellular Ca2+ channel which plays a major role in Ca2+ signalling. Three isoforms of IP3R have been identified (IP3R-1, IP3R-2 and IP3R-3) and most cell types express different proportions of each isoform. The differences between the pharmacological and functional properties of the various isoforms of IP3R are poorly known. RINm5F cells who express almost exclusively (approximately 90%) the IP3R-3, represent an interesting model to study this particular isoform. Here, we investigated a regulatory mechanism by which protein kinase C (PKC) may influence IP3R-3-mediated Ca2+ release. With an immunoprecipitation approach we confirmed that RINm5F cells express almost exclusively the IP3R-3 isoform. With an in vitro phosphorylation approach, we showed that the immunopurified IP3R-3 was efficiently phosphorylated by exogenous PKC. With a direct in cellulo approach and an indirect in cellulo back-phosphorylation approach we showed that phorbol-12-myristate-13-acetate (PMA) causes the phosphorylation of IP3R-3 in intact RINm5F cells. In saponin-permeabilized RINm5F cells, 3-induced Ca2+ release was reduced after a pre-treatment with PMA. PMA also reduced the Ca2+ response of intact RINm5F cells stimulated with carbachol and EGF, two agonists that use different receptor types to activate phospholipase C. These results suggest the existence of a negative feedback mechanism involving two components of the Ca2+ signalling cascade, whereby activated PKC dampens IP3R-3 activity. 相似文献
8.
Sparrow DB Clements M Withington SL Scott AN Novotny J Sillence D Kusumi K Beddington RS Dunwoodie SL 《The International journal of developmental biology》2002,46(4):365-374
The Notch signalling pathway has a central role in a wide variety of developmental processes and it is not therefore surprising that mutations in components of this pathway can cause dramatic human genetic disorders. One developmental process in which the Notch pathway is involved at multiple levels is somitogenesis, the mechanism by which the embryo is divided into segments that ultimately form structures such as the axial skeleton and skeletal muscle of the trunk. We are investigating the human genetic disorder spondylocostal dysplasia (SCD), which is a group of malsegmentation syndromes that occur when this process is disrupted. Mutations in the Notch ligand DELTA-LIKE 3 (DLL3) are responsible for cases of autosomal recessive SCD type I (SCDO1), and we are using information derived from these mutations to study the structure of the DLL3 protein. To aid in elucidation of the underlying developmental defect in SCDO1, we have generated a mouse model by targeted deletion of the Dll3 gene (Dunwoodie et al., 2002). These mice show segmentation defects similar to those seen in SCDO1. In addition, these mice have a distinct set of neural defects that may be useful in future neurological assessment of affected individuals. Finally, since not all cases of SCD are due to mutation of DLL3, we are investigating various genes to find other candidates involved in this genetic disease. 相似文献
9.
Identification of a PEST-like motif in listeriolysin O required for phagosomal escape and for virulence in Listeria monocytogenes 总被引:8,自引:0,他引:8
Lety MA Frehel C Dubail I Beretti JL Kayal S Berche P Charbit A 《Molecular microbiology》2001,39(5):1124-1139
The hly-encoded listeriolysin O (LLO) is a major virulence factor secreted by the intracellular pathogen Listeria monocytogenes, which plays a crucial role in the escape of bacteria from the phagosomal compartment. Here, we identify a putative PEST sequence close to the N-terminus of LLO and focus on the role of this motif in the biological activities of LLO. Two LLO variants were constructed: a deletion mutant protein, lacking the 19 residues comprising this sequence (residues 32-50), and a recombinant protein of wild-type size, in which all the P, E, S or T residues within this motif have been substituted. The two mutant proteins were fully haemolytic and were secreted in culture supernatants of L. monocytogenes in quantities comparable with that of the wild-type protein. Strikingly, both mutants failed to restore virulence to a hly-negative strain in vivo. In vitro assays showed that L. monocytogenes expressing the LLO deletion mutant was strongly impaired in its ability to escape from the phagosomal vacuole and, subsequently, to divide in the cytosol of infected cells. This work reveals for the first time that the N-terminal portion of LLO plays an important role in the development of the infectious process of L. monocytogenes. 相似文献
10.
Albouy G Sterpenich V Balteau E Vandewalle G Desseilles M Dang-Vu T Darsaud A Ruby P Luppi PH Degueldre C Peigneux P Luxen A Maquet P 《Neuron》2008,58(2):261-272
Functional magnetic resonance imaging (fMRI) was used to investigate the cerebral correlates of motor sequence memory consolidation. Participants were scanned while training on an implicit oculomotor sequence learning task and during a single testing session taking place 30 min, 5 hr, or 24 hr later. During training, responses observed in hippocampus and striatum were linearly related to the gain in performance observed overnight, but not over the day. Responses in both structures were significantly larger at 24 hr than at 30 min or 5 hr. Additionally, the competitive interaction observed between these structures during training became cooperative overnight. These results stress the importance of both hippocampus and striatum in procedural memory consolidation. Responses in these areas during training seem to condition the overnight memory processing that is associated with a change in their functional interactions. These results show that both structures interact during motor sequence consolidation to optimize subsequent behavior. 相似文献