首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5761篇
  免费   515篇
  国内免费   5篇
  2022年   56篇
  2021年   72篇
  2020年   73篇
  2019年   74篇
  2018年   80篇
  2017年   72篇
  2016年   123篇
  2015年   213篇
  2014年   254篇
  2013年   348篇
  2012年   365篇
  2011年   342篇
  2010年   245篇
  2009年   197篇
  2008年   293篇
  2007年   317篇
  2006年   250篇
  2005年   252篇
  2004年   284篇
  2003年   268篇
  2002年   209篇
  2001年   118篇
  2000年   105篇
  1999年   99篇
  1998年   67篇
  1997年   59篇
  1996年   66篇
  1995年   55篇
  1994年   54篇
  1993年   43篇
  1992年   74篇
  1991年   84篇
  1990年   76篇
  1989年   80篇
  1988年   67篇
  1987年   56篇
  1986年   41篇
  1985年   44篇
  1984年   41篇
  1983年   44篇
  1982年   34篇
  1981年   32篇
  1980年   27篇
  1979年   40篇
  1978年   39篇
  1977年   26篇
  1976年   30篇
  1975年   36篇
  1974年   36篇
  1973年   37篇
排序方式: 共有6281条查询结果,搜索用时 15 毫秒
1.
Synthesis of prenylquinones in chloroplasts   总被引:3,自引:0,他引:3  
  相似文献   
2.
Pseudorevertants of an Escherichia coli exonuclease V (RecBC enzyme)-negative mutant have been isolated after ethyl methane sulfonate mutagenesis of a recC73 (presumed missense) mutant. The remedial mutations in each of the four pseudorevertants studied in detail map and complement as recC mutations. By several criteria, such as recombination proficiency, support of phage growth, RecBC nuclease activity, and cell viability, the pseudorevertants appear to have regained partially or completely various aspects of RecBC activity. However, chi recombinational hotspots, which stimulate exclusively the RecBC pathway of recombination, have no detectable activity in lambda vegetative crosses in the pseudorevertants. The properties of these mutants, in which the RecBC pathway of recombination is active yet in which chi is not active, are consistent with the hypothesis that wild-type RecBC enzyme directly interacts with chi sites; alternatively, the mutants may block or bypass the productive interaction of another recombinational enzyme with chi.  相似文献   
3.
Nonstructural protein 5A (NS5A) of hepatitis C virus (HCV) is an indispensable component of the HCV replication and assembly machineries. Although its precise mechanism of action is not yet clear, current evidence indicates that its structure and function are regulated by the cellular peptidylprolyl isomerase cyclophilin A (CyPA). CyPA binds to proline residues in the C-terminal half of NS5A, in a distributed fashion, and modulates the structure of the disordered domains II and III. Cyclophilin inhibitors (CPIs), including cyclosporine (CsA) and its nonimmunosuppressive derivatives, inhibit HCV infection of diverse genotypes, both in vitro and in vivo. Here we report a mechanism by which CPIs inhibit HCV infection and demonstrate that CPIs can suppress HCV assembly in addition to their well-documented inhibitory effect on RNA replication. Although the interaction between NS5A and other viral proteins is not affected by CPIs, RNA binding by NS5A in cell culture-based HCV (HCVcc)-infected cells is significantly inhibited by CPI treatment, and sensitivity of RNA binding is correlated with previously characterized CyPA dependence or CsA sensitivity of HCV mutants. Furthermore, the difference in CyPA dependence between a subgenomic and a full-length replicon of JFH-1 was due, at least in part, to an additional role that CyPA plays in HCV assembly, a conclusion that is supported by experiments with the clinical CPI alisporivir. The host-directed nature and the ability to interfere with more than one step in the HCV life cycle may result in a higher genetic barrier to resistance for this class of HCV inhibitors.  相似文献   
4.
5.
6.
The Oxytricha nova telomere end binding protein (OnTEBP) recognizes, binds and protects the single-stranded 3'-terminal DNA extension found at the ends of macronuclear chromosomes. The structure of this complex shows that the single strand GGGGTTTTGGGG DNA binds in a deep cleft between the two protein subunits of OnTEBP, adopting a non-helical and irregular conformation. In extending the resolution limit of this structure to 1.86 A, we were surprised to find a G-quartet linked dimer of the GGGGTTTTGGGG DNA also packing within the crystal lattice and interacting with the telomere end binding protein. The G-quartet DNA exhibits the same structure and topology as previously observed in solution by NMR with diagonally crossing d(TTTT) loops at either end of the four-stranded helix. Additionally, the crystal structure reveals clearly visible Na(+), and specific patterns of bound water molecules in the four non-equivalent grooves. Although the G-quartet:protein contact surfaces are modest and might simply represent crystal packing interactions, it is interesting to speculate that the two types of telomeric DNA-protein interactions observed here might both be important in telomere biology.  相似文献   
7.
A soluble, sodium-nitroprusside-stimulated guanylate cyclase as been purified from bovine lung by DEAE-cellulose chromatography, ammonium sulfate precipitation, chromatography on Blue Sepharose CL-6B and preparative gel electrophoresis. Apparent homogeneity was obtained after at least 7000-fold purification with a yield of 3%. A single stained band (Mr 72000) was observed after gel electrophoresis in the presence of sodium dodecyl sulfate. The purified enzyme migrated as one band also under non-denaturing conditions in acrylamide gels (5-12%). The mobility of this band corresponded to an Mr of 145000. The enzyme sedimented on sucrose gradients with an S20, w of 7.0 S. Gel filtration yielded a Stokes' radius of 4.6 nm. These data suggest that the enzyme has an Mr of approximately 150000 and consists of two, presumably identical, subunits of Mr 72000. Sodium nitroprusside stimulated the purified enzyme 15-fold and 140-fold to specific activities of 8.5 and 15.7 mumol of cGMP formed min-1 mg-1 in the presence of Mn2+ and Mg2+, respectively. Formation of cGMP was proportional to the incubation time and to the amount of enzyme added. The stimulatory effect of sodium nitroprusside was half-maximal at about 2 microM, was observed immediately after addition and could be reversed either by dilution or by removal of sodium nitroprusside on a Sephadex G-25 column. The purified enzyme in the absence of catalase was stimulated by sodium nitroprusside, N-methyl-N'-nitro-N-nitrosoguanidine and 3-morpholino-sydnonimine and in the presence of catalase by sodium nitrite and sodium azide. In the presence of Mn2+ and sodium nitroprusside, the purified enzyme catalyzed the formation of cAMP from ATP at a rate of 0.6 mumol min-1 mg-1.  相似文献   
8.
Nitrogenase activity, hydrogen evolution, biomass production and nodulation were studied in threeCasuarina species,C. equisetifolia Forst.,C. glauca Sieber ex Spreng andC. obesa Miq., either inoculated with a crushed nodule inoculum prepared fromC. glauca nodules or inoculated with the pure cultureHFP CcI3. Nodulation was also studied inC. cristata Miq. inoculated with the above mentionedFrankia sources. C. equisetifolia, C. glauca andC. obesa were nodulated when inoculated with both of theFrankia inoculum, whileC. cristata was very poorly nodulated. Nitrogenase activity per plant and on a nodule dry weight basis was significantly highest inC. glauca inoculated withC. glauca inoculum after 150 days from planting. This difference decreased and at 217 days from planting there was no significant difference between the symbioses, except forC. obesa inoculated withC. glauca inoculum which showed the significantly lowest nitrogenase activity. After 150 days from planting relative efficiency of nitrogenase was lowest inC. equisetifolia inoculated withHFP CcI3 and inC. equisetifolia inoculated withC. glauca inoculum. Biomass production was similar inC. glauca inoculated withC. glauca inoculum, inC. equisetifolia inoculated withHFP CcI3 and inC. obesa inoculated withHFP CcI3 at the final harvest. The data presented here show that there is a strong interrelationship between host plant and endobiont. This interrelationship is of considerable importance when introducing Casuarina symbioses for production of fuel wood.  相似文献   
9.
Iron is an essential element for diverse biological functions. In mammals, the majority of iron is enclosed within a single prosthetic group: heme. In metazoans, heme is synthesized via a highly conserved and coordinated pathway within the mitochondria. However, iron is acquired from the environment and subsequently assimilated into various cellular pathways, including heme synthesis. Both iron and heme are toxic but essential cofactors. How is iron transported from the extracellular milieu to the mitochondria? How are heme and heme intermediates coordinated with iron transport? Although recent studies have answered some questions, several pieces of this intriguing puzzle remain unsolved.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号