首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   171篇
  免费   11篇
  182篇
  2022年   2篇
  2021年   4篇
  2020年   1篇
  2019年   3篇
  2018年   2篇
  2017年   3篇
  2016年   6篇
  2015年   7篇
  2014年   7篇
  2013年   9篇
  2012年   19篇
  2011年   18篇
  2010年   8篇
  2009年   17篇
  2008年   10篇
  2007年   8篇
  2006年   10篇
  2005年   10篇
  2004年   14篇
  2003年   7篇
  2002年   3篇
  2001年   2篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1992年   1篇
  1985年   1篇
  1967年   2篇
排序方式: 共有182条查询结果,搜索用时 15 毫秒
1.
The characterization of the cross-reactive, or heterologous, neutralizing antibody responses developed during human immunodeficiency virus type 1 (HIV-1) infection and the identification of factors associated with their generation are relevant to the development of an HIV vaccine. We report that in healthy HIV-positive, antiretroviral-naïve subjects, the breadth of plasma heterologous neutralizing antibody responses correlates with the time since infection, plasma viremia levels, and the binding avidity of anti-Env antibodies. Anti-CD4-binding site antibodies are responsible for the exceptionally broad cross-neutralizing antibody responses recorded only in rare plasma samples. However, in most cases examined, antibodies to the variable regions and to the CD4-binding site of Env modestly contributed in defining the overall breadth of these responses. Plasmas with broad cross-neutralizing antibody responses were identified that targeted the gp120 subunit, but their precise epitopes mapped outside the variable regions and the CD4-binding site. Finally, although several plasmas were identified with cross-neutralizing antibody responses that were not directed against gp120, only one plasma with a moderate breadth of heterologous neutralizing antibody responses contained cross-reactive neutralizing antibodies against the 4E10 epitope, which is within the gp41 transmembrane subunit. Overall, our study indicates that more than one pathway leads to the development of broad cross-reactive neutralizing antibodies during HIV infection and that the virus continuously escapes their action.  相似文献   
2.
We studied the significance of four hydrophobic residues within the 225–230 region of apoA-I on its structure and functions and their contribution to the biogenesis of HDL. Adenovirus-mediated gene transfer of an apoA-I[F225A/V227A/F229A/L230A] mutant in apoA-I−/− mice decreased plasma cholesterol, HDL cholesterol, and apoA-I levels. When expressed in apoA-I−/− × apoE−/− mice, approximately 40% of the mutant apoA-I as well as mouse apoA-IV and apoB-48 appeared in the VLDL/IDL/LDL. In both mouse models, the apoA-I mutant generated small spherical particles of pre-β- and α4-HDL mobility. Coexpression of the apoA-I mutant and LCAT increased and shifted the-HDL cholesterol peak toward lower densities, created normal αHDL subpopulations, and generated spherical-HDL particles. Biophysical analyses suggested that the apoA-I[225–230] mutations led to a more compact folding that may limit the conformational flexibility of the protein. The mutations also reduced the ability of apoA-I to promote ABCA1-mediated cholesterol efflux and to activate LCAT to 31% and 66%, respectively, of the WT control. Overall, the apoA-I[225–230] mutations inhibited the biogenesis of-HDL and led to the accumulation of immature pre-β- and α4-HDL particles, a phenotype that could be corrected by administration of LCAT.  相似文献   
3.
Arsenic, an established carcinogen and toxicant, occurs in drinking water and food and affects millions of people worldwide. Arsenic appears to interfere with gene expression through epigenetic processes, such as DNA methylation and post-translational histone modifications. We investigated the effects of arsenic on histone residues in vivo as well as in vitro. Analysis of H3K9Ac and H3K9me3 in CD4+ and CD8+ sorted blood cells from individuals exposed to arsenic through drinking water in the Argentinean Andes showed a significant decrease in global H3K9me3 in CD4+ cells, but not CD8+ cells, with increasing arsenic exposure. In vitro studies of inorganic arsenic-treated T lymphocytes (Jurkat and CCRF-CEM, 0.1, 1, and 100 μg/L) showed arsenic-related modifications of H3K9Ac and changes in the levels of the histone deacetylating enzyme HDAC2 at very low arsenic concentrations. Further, in vitro exposure of kidney HEK293 cells to arsenic (1 and 5 μM) altered the protein levels of PCNA and DNMT1, parts of a gene expression repressor complex, as well as MAML1. MAML1 co-localized and interacted with components of this complex in HEK293 cells, and in silico studies indicated that MAML1 expression correlate with HDAC2 and DNMT1 expression in kidney cells. In conclusion, our data suggest that arsenic exposure may lead to changes in the global levels of H3K9me3 and H3K9Ac in lymphocytes. Also, we show that arsenic exposure affects the expression of PCNA and DNMT1—proteins that are part of a gene expression silencing complex.  相似文献   
4.
Angeliki Buku  Joseph A. Price 《Peptides》2001,22(12):1987-1991
Mast cell degranulating (MCD) peptide was modified in its two disulfide bridges and in the two arginine residues in order to measure the ability of these analogs to induce histamine release from mast cells in vitro. Analogs prepared were [Ala3,15]MCD, [Ala5,19]MCD, [Orn16]MCD, and [Orn7,16]MCD. Their histamine-releasing activity was determined spectrofluorometrically with peritoneal mast cells. The monocyclic analogs in which the cysteine residues were replaced pairwise with alanine residues showed three-to ten-fold diminished histamine-releasing activity respectively, compared with the parent MCD peptide. Substantial increases in activity were observed where arginine residues were replaced by ornithines. The ornithine-mono substituted analog showed an almost six-fold increase and the ornithine-doubly substituted analog three-fold increase in histamine-releasing activity compared with the parent MCD peptide. The structural changes associated with these activities were followed by circular dichroism (CD) spectroscopy. Changes in the shape and ellipticity of the CD spectra reflected a role for the disulfide bonds and the two arginine residues in the overall conformation and biological activity of the molecule.  相似文献   
5.
FimH, the adhesive subunit of type 1 fimbriae expressed by many enterobacteria, mediates mannose-sensitive binding to target host cells. At the same time, fine receptor-structural specificities of FimH from different species can be substantially different, affecting bacterial tissue tropism and, as a result, the role of the particular fimbriae in pathogenesis. In this study, we compared functional properties of the FimH proteins from Escherichia coli and Klebsiella pneumoniae, which are both 279 amino acids in length but differ by some ∼15% of residues. We show that K. pneumoniae FimH is unable to mediate adhesion in a monomannose-specific manner via terminally exposed Manα(1-2) residues in N-linked oligosaccharides, which are the structural basis of the tropism of E. coli FimH for uroepithelial cells. However, K. pneumoniae FimH can bind to the terminally exposed Manα(1-3)Manβ(1-4)GlcNAcβ1 trisaccharide, though only in a shear-dependent manner, wherein the binding is marginal at low shear force but enhanced sevenfold under increased shear. A single mutation in the K. pneumoniae FimH, S62A, converts the mode of binding from shear dependent to shear independent. This mutation has occurred naturally in the course of endemic circulation of a nosocomial uropathogenic clone and is identical to a pathogenicity-adaptive mutation found in highly virulent uropathogenic strains of E. coli, in which it also eliminates the dependence of E. coli binding on shear. The shear-dependent binding properties of the K. pneumoniae and E. coli FimH proteins are mediated via an allosteric catch bond mechanism. Thus, despite differences in FimH structure and fine receptor specificity, the shear-dependent nature of FimH-mediated adhesion is highly conserved between bacterial species, supporting its remarkable physiological significance.The most common type of adhesive organelle in the Enterobacteriaceae is the type 1 fimbria, which has been most extensively studied in Escherichia coli. The corresponding structures of Klebsiella pneumoniae are similar to those of E. coli with regard to genetic composition and regulation (15). Type 1 fimbriae are composed primarily of the structural subunit FimA, with minor amounts of three ancillary subunits, FimF, FimG, and the mannose-specific adhesin FimH. The FimH adhesin is an allosteric protein that mediates the catch bond mechanism of adhesion where the binding is increased under increased shear stress (48).It has been demonstrated in E. coli that FimH has two domains, the mannose-binding lectin domain (from amino acid [aa] 1 through 156) and the fimbria-incorporating pilin domain (from aa 160 through 279), connected via a 3-aa-long linker chain (6). A mannose-binding site is located at the top of the lectin domain, at the opposite end from the interdomain linker (17).Several studies have demonstrated that type 1 fimbriae play an important role in E. coli urinary tract infection (UTI) (7, 21, 23, 35). In addition, in urinary E. coli isolates, the FimH adhesin accumulates amino acid replacements which increase tropism for the uroepithelium and various components of basement membranes (21, 30, 35, 37, 49). Most of the replacements increase the monomannose binding capability of FimH under low shear, by altering allosteric catch bond properties of the protein (48). The mutated FimH variants were shown to provide an advantage in colonization of the urinary tract in the mouse model (35) and correlate with the overall extraintestinal virulence of E. coli (16). Thus, FimH mutations are pathoadaptive in nature.Klebsiella pneumoniae is recognized as an important opportunistic pathogen frequently causing UTIs, septicemia, or pneumonia in immunocompromised individuals (29). It is responsible for up to 10% of all nosocomial bacterial infections (18, 41). K. pneumoniae is ubiquitous in nature, and it has been shown that environmental isolates are phenotypically indistinguishable from clinical isolates (22, 26, 27, 29, 33). Furthermore, it has been demonstrated that environmental isolates of K. pneumoniae are as virulent as clinical isolates (28, 45).K. pneumoniae possesses a number of known virulence factors, including a pronounced capsule, type 3 fimbriae, and type 1 fimbriae (29, 44). Type 1 fimbriae produced by K. pneumoniae are described as functionally and structurally similar to type 1 fimbriae from E. coli (25) and have been shown to play a significant role in K. pneumoniae UTI (32, 43).We have previously shown that mature FimH from 54 isolates of K. pneumoniae (isolated from urine, blood, liver, and the environment) is represented by seven protein variants due to point amino acid replacements. (42) When K. pneumoniae FimH was aligned with the FimH of E. coli, they showed ∼85% similarity at the amino acid level. Furthermore, a majority (14 out of 21 isolates) of the K. pneumoniae strains isolated from patients with UTI grouped into a single clonal group based on multilocus sequence typing, but fimH in one isolate in the group differed from the others by a single nucleotide mutation resulting in an amino acid change, serine to alanine, in position 62 (42). The same mutation has been found in FimH of a highly uropathogenic clone of E. coli and significantly increases the adhesin''s ability to adhere to monomannose under low or no shear (19, 39, 50).In this study, we describe the extent and pattern of structural variability of the FimH protein from K. pneumoniae and perform comparative analyses of the functional properties of FimH from both K. pneumonae and E. coli.  相似文献   
6.
Morphogenesis of the central nervous system relies in large part upon the correct migration of neuronal cells from birthplace to final position. Two general modes of migration govern CNS morphogenesis: radial, which is mostly glia-guided and topologically relatively simple; and tangential, which often involves complex movement of neurons in more than one direction. We describe the consequences of loss of function of presenilin 1 on these fundamental processes. Previous studies of the central nervous system in presenilin 1 homozygote mutant embryos identified a premature neuronal differentiation that is transient and localized, with cortical dysplasia at later stages. We document widespread effects on CNS morphogenesis that appear strongly linked to defective neuronal migration. Loss of presenilin 1 function perturbs both radial and tangential migration in cerebral cortex, and several tangential migratory pathways in the brainstem. The inability of cells to execute their migratory trajectories affects cortical lamination, formation of the facial branchiomotor nucleus, the spread of cerebellar granule cell precursors to form the external granule layer and development of the pontine nuclei. Finally, overall morphogenesis of the mid-hindbrain region is abnormal, resulting in incomplete midline fusion of the cerebellum and overgrowth of the caudal midbrain. These observations indicate that in the absence of presenilin 1 function, the ability of a cell to move can be severely impaired regardless of its mode of migration, and, at a grosser level, brain morphogenesis is perturbed. Our results demonstrate that presenilin 1 plays a much more important role in brain development than has been assumed, consistent with a pleiotropic involvement of this molecule in cellular signaling.  相似文献   
7.
The synthesis and characterization of copper(II) complexes with a potent non-steroidal anti-inflammatory drug, tolfenamic acid, Htolf, with formula [Cu(tolf)(2)L](2) (where L is H(2)O or DMF, N,N-dimethylformamide) were investigated. The crystal and molecular structure of [Cu(tolf)(2)(DMF)](2) was reported. Crystallographic data are as follows: monoclinic system, space group P2(1)/n with cell constants a=9.068(2) A, b=14.514(3) A, c=22.826(4) A, V=2948.9(10) A(3) and Z=2. The crystal structure consists of binuclear, quadruply bridged neutral molecule with a Cu-Cu bond length of 2.6075(19) A. The complex is self-assembled via C-H-pi intermolecular stacking interactions. Spectroscopic and electrochemical studies were reported. The superoxide dismutase activity is measured and compared with those of superoxide dismutase enzyme, SOD, the free ligand and related copper complexes with non-steroidal anti-inflammatory drugs, NSAIDs. IC(50) value was measured by the Fridovich test (1.97+/-0.17 microM), which showed that [Cu(tolf)(2)L](2) is a good superoxide scavenger.  相似文献   
8.
BACKGROUND: In contrast to cellular receptors, soluble receptors do not enhance the cellular activation because they do not have transmembranic and cytoplasmic parts, acting thereby as endogenous regulatory mechanisms against systemic functions of cytokines. AIM: To measure serum concentrations of the soluble interleukin-2 receptor (sIL2R), soluble interleukin-4 receptor (sIL4R), soluble interleukin-6 receptor (sIL6R), and soluble tumor necrosis factor-alpha receptor I and soluble tumor necrosis factor-alpha receptor II, during the perinatal and early neonatal period, in order to evaluate their role in activation of immune response in labor and the first days postpartum. METHODS: Soluble receptor serum concentrations were determined by enzyme-linked immunosorbent assay, in 45 healthy, full-termed neonates during the first and fifth days after birth, in 25 of their mothers (MS), in 25 samples of umbilical cords (UC) and in 25 healthy adult donors age-matched with the mothers (controls). RESULTS: Soluble receptor serum concentrations showed considerable changes during labor and early neonatal life, being significantly higher both in MS (except sIL6R) and in neonatal sample UC, first and fifth days after birth, compared with controls (p<0.0001). Neonatal serum sIL2R and sIL6R increased significantly from birth to the fifth day, while the remaining receptors showed a rapid increase in the first day (p<0.0001), declining significantly thereafter (p<0.0001). CONCLUSION: Our findings suggest that the elevated concentrations of all studied soluble cytokine receptors reflect the activation of immune response, and represent also regulatory protective mechanisms for mother and fetus-neonate against the systemic function of cytokines during labor and early neonatal life.  相似文献   
9.
10.
BACKGROUND: Genetic skeletal disorders of the fetus and infant are a large group of genetic disorders, comprising the groups formerly assigned as skeletal dysplasias (osteochondrodysplasias), dysostoses, and malformation syndromes with a skeletal component. Genetic skeletal disorders may be prenatally detected by ultrasonography or result in intrauterine or early postnatal death, constituting one difficult diagnostic field met by the pathologist who performs the perinatal autopsy. METHODS: In this retrospective study, we have gathered radiologic, physical, histopathologic, and molecular data regarding 41 cases of genetic skeletal disorders diagnosed among 1980 fetal and perinatal autopsies over a 10‐year period. RESULTS: Our series of cases were classified according to the 2006 Nosology and Classification of Genetic Skeletal Disorders. The overall frequency of genetic skeletal disorders was 1:48 autopsies. The FGFR3 group and osteogenesis imperfecta type 2 were the more frequently encountered disorders. The mean gestational age at autopsy was 21.9 weeks (range, 12–37 weeks). A final diagnosis was obtained in 95% of cases. Genetic skeletal disorders were detected by prenatal ultrasound in 90% of cases, with a correct typing of the disorder achieved in only 34%. Molecular analysis was confirmative in 5 cases. CONCLUSIONS: The central role of the perinatal pathologist in collaboration with specialized services is essential for the correct interpretation of the radiologic, physical, and histopathologic findings, to accurately classify specific types of genetic skeletal disorders and enable genetic counseling. Birth Defects Research (Part A), 2009. © 2009 Wiley‐Liss, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号