首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70篇
  免费   4篇
  2021年   1篇
  2018年   3篇
  2017年   1篇
  2015年   5篇
  2013年   5篇
  2012年   5篇
  2011年   9篇
  2010年   1篇
  2009年   10篇
  2008年   7篇
  2007年   3篇
  2006年   3篇
  2005年   4篇
  2004年   1篇
  2003年   3篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1995年   3篇
  1993年   2篇
  1992年   3篇
  1990年   1篇
排序方式: 共有74条查询结果,搜索用时 31 毫秒
1.
In continuously stirred tank reactor experiments, with manure as substrate at thermophilic temperatures, the use of volatile fatty acids (VFA) as process indicators was investigated. Changes in VFA level were shown to be a good parameter for indicating process instability. The VFA were evaluated according to their relative changes caused by changes in hydraulic loading, organic loading or temperature. Butyrate and isobutyrate together were found to be particularly good indicators. Butyrate and isobutyrate concentrations increased significantly 1 or 2 days after the imposed perturbation, which makes these acids suitable for process monitoring and important for process control of the anaerobic biological system. In addition it was shown in a batch experiment that VFA at concentrations up to 50 mM did not reduce the overall methane production rate. This showed that VFA accumulation in anaerobic reactors was the result of process imbalance, not the cause of inhibition, thus justifying the use of VFA as process indicators.  相似文献   
2.
3.
In recent years, increasing attention has been paid to the use of renewable biomass for energy production. Anaerobic biotechnological approaches for production of liquid energy carriers (ethanol and a mixture of acetone, butanol and ethanol) from biomass can be employed to decrease environmental pollution and reduce dependency on fossil fuels. There are two major biological processes that can convert biomass to liquid energy carriers via anaerobic biological breakdown of organic matter: ethanol fermentation and mixed acetone, butanol, ethanol (ABE) fermentation. The specific product formation is determined by substrates and microbial communities available as well as the operating conditions applied. In this review, we evaluate the recent biotechnological approaches employed in ethanol and ABE fermentation. Practical applicability of different technologies is discussed taking into account the microbiology and biochemistry of the processes.  相似文献   
4.
The two-stage process for extreme thermophilic hydrogen and thermophilic methane production from wheat straw hydrolysate was investigated in up-flow anaerobic sludge bed (UASB) reactors. Specific hydrogen and methane yields of 89 ml-H2/g-VS (190 ml-H2/g-sugars) and 307 ml-CH4/g-VS, respectively were achieved simultaneously with the overall VS removal efficiency of 81% by operating with total hydraulic retention time (HRT) of 4 days . The energy conversion efficiency was dramatically increased from only 7.5% in the hydrogen stage to 87.5% of the potential energy from hydrolysate, corresponding to total energy of 13.4 kJ/g-VS. Dominant hydrogen-producing bacteria in the H2-UASB reactor were Thermoanaerobacter wiegelii, Caldanaerobacter subteraneus, and Caloramator fervidus. Meanwhile, the CH4-UASB reactor was dominated with methanogens of Methanosarcina mazei and Methanothermobacter defluvii. The results from this study suggest the two stage anaerobic process can be effectively used for energy recovery and for stabilization of hydrolysate at anaerobic conditions.  相似文献   
5.
Batch anaerobic codigestion of municipal household solid waste (MHSW) and digested manure in mesophilic conditions was carried out. The different waste-to-biomass ratios and intensity of mixing were studied theoretically and experimentally. The experiments showed that when organic loading was high, intensive mixing resulted in acidification and failure of the process, while low mixing intensity was crucial for successful digestion. However, when loading was low, mixing intensity had no significant effect on the process. We hypothesized that mixing was preventing establishment of methanogenic zones in the reactor space. The methanogenic zones are important to withstand inhibition due to development of acids formed during acidogenesis. The 2D distributed models of symmetrical cylinder reactor are presented based on the hypothesis of the necessity of a minimum size of methanogenic zones that can propagate and establish a good methanogenic environment. The model showed that at high organic loading rate spatial separation of the initial methanogenic centers from active acidogenic areas is the key factor for efficient conversion of solids to methane. The initial level of methanogenic biomass in the initiation centers is a critical factor for the survival of these centers. At low mixing, most of the initiation methanogenic centers survive and expand over the reactor volume. However, at vigorous mixing the initial methanogenic centers are reduced in size, averaged over the reactor volume, and finally dissipate. Using fluorescence in situ hybridization, large irregular cocci of microorganisms were observed in the case with minimal mixing, while in the case with high stirring mainly dead cells were found.  相似文献   
6.
The oxidation of acetate to hydrogen, and the subsequent conversion of hydrogen and carbon dioxide to methane, has been regarded largely as a niche mechanism occurring at high temperatures or under inhibitory conditions. In this study, 13 anaerobic reactors and sediment from a temperate anaerobic lake were surveyed for their dominant methanogenic population by using fluorescent in situ hybridization and for the degree of acetate oxidation relative to aceticlastic conversion by using radiolabeled [2-14C]acetate in batch incubations. When Methanosaetaceae were not present, acetate oxidation was the dominant methanogenic pathway. Aceticlastic conversion was observed only in the presence of Methanosaetaceae.  相似文献   
7.
Biogas produced by anaerobic digestion, is mainly used in a gas motor for heat and electricity production. However, after removal of CO2, biogas can be upgraded to natural gas quality, giving more utilization possibilities, such as utilization as autogas, or distant utilization by using the existing natural gas grid. The current study presents a new biological method for biogas upgrading in a separate biogas reactor, containing enriched hydrogenotrophic methanogens and fed with biogas and hydrogen. Both mesophilic‐ and thermophilic anaerobic cultures were enriched to convert CO2 to CH4 by addition of H2. Enrichment at thermophilic temperature (55°C) resulted in CO2 and H2 bioconversion rate of 320 mL CH4/(gVSS h), which was more than 60% higher than that under mesophilic temperature (37°C). Different dominant species were found at mesophilic‐ and thermophilic‐enriched cultures, as revealed by PCR–DGGE. Nonetheless, they all belonged to the order Methanobacteriales, which can mediate hydrogenotrophic methanogenesis. Biogas upgrading was then tested in a thermophilic anaerobic reactor under various operation conditions. By continuous addition of hydrogen in the biogas reactor, high degree of biogas upgrading was achieved. The produced biogas had a CH4 content, around 95% at steady‐state, at gas (mixture of biogas and hydrogen) injection rate of 6 L/(L day). The increase of gas injection rate to 12 L/(L day) resulted in the decrease of CH4 content to around 90%. Further study showed that by decreasing the gas–liquid mass transfer by increasing the stirring speed of the mixture the CH4 content was increased to around 95%. Finally, the CH4 content around 90% was achieved in this study with the gas injection rate as high as 24 L/(L day). Biotechnol. Bioeng. 2012; 109: 2729–2736. © 2012 Wiley Periodicals, Inc.  相似文献   
8.
Studies of the degradation of the two isomeric forms of butyrate in different anaerobic environments showed isomerization betweenn- andi-butyrate. Degradation rates were similar for the different examined systems and degradation rates forn-butyrate degradation were generally higher than fori-butyrate. Degradation rates forn-butyrate ranged from 0.52 to 1.39 day–1, while the rates fori-butyrate were from 0.46 to 1.15 day–1. Production of isomers was not observed when the volatile fatty acid degradation was inhibited by addition of bromoethane sulfonic acid, indicating that isomerization was coupled to the methanogenic degradation of the acid. The degree of isomerization observed duringn-butyrate degradation was similar to the degree duringi-butyrate degradation. Experiments indicated that the isomerization degree was higher for the thermophilic than for the mesophilic inocula.  相似文献   
9.
10.
Electricity production from acetate, glucose and xylose with humic acid as mediator was investigated in two chambers microbial fuel cells (MFCs). Acetate produced the highest voltage (570 mV with 1000 Omega) and maximum power density (P(maxd)=123 mW/m(2)) due to a simpler metabolism than with glucose and xylose. Glucose and xylose resulted in P(maxd) of 28 mW/m(2) and 32 mW/m(2) at lower voltage of 380 mV and 414 mV, respectively. P(maxd) increased by 84% and 30%, for glucose and xylose respectively, when humic acid (2g/l) was present in the medium. No significant effect was found with acetate since the internal resistance possessed a limiting effect. The increase of P(maxd) due to humic acid presence was attributed to its ability to act as mediator. Even though pH decreased to 5 with glucose and xylose, due to production of acetate and propionate, the voltage remained on the same level of 250-350 mV.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号