首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2006年   2篇
  2004年   1篇
排序方式: 共有9条查询结果,搜索用时 234 毫秒
1
1.
We synthesized new tropolone derivatives substituted with cyclic amines: piperidine, piperazine or pyrrolidine. The most active anti-helicase compound (IC50 = 3.4 μM), 3,5,7-tri[(4′-methylpiperazin-1′-yl)methyl]tropolone (2), inhibited RNA replication by 50% at 46.9 μM (EC50) and exhibited the lowest cytotoxicity (CC50) >1 mM resulting in a selectivity index (SI = CC50/EC50) >21. The most efficient replication inhibitor, 3,5,7-tri[(4′-methylpiperidin-1′-yl)methyl]tropolone (6), inhibited RNA replication with an EC50 of 32.0 μM and a SI value of 17.4, whereas 3,5,7-tri[(3′-methylpiperidin-1′-yl)methyl]tropolone (7) exhibited a slightly lower activity with an EC50 of 35.6 μM and a SI of 9.8.  相似文献   
2.
Our previous work showed that the adduct between beta-mercaptoethanol and the single cysteine residue (Cys57) in superoxide dismutase from the psychrophilic eubacterium Pseudoalteromonas haloplanktis (PhSOD) reduces the enzyme inactivation by peroxynitrite. In this work, immunoblotting experiments prove that peroxynitrite inactivation of PhSOD involves formation of nitrotyrosine residue(s). In order to study the role of Cys57 as a redox-sensor residue modifiable by cellular thiols, a recombinant PhSOD and two Cys57 mutants were produced and characterized. Recombinant and mutant enzymes share similar activity and peroxynitrite inactivation, but different reactivity towards three glutathione forms. Indeed, oxidized glutathione and S-nitrosoglutathione, but reduced glutathione, lead to S-glutathionylation of recombinant PhSOD. This new covalent modification for a Fe-SOD does not occur in both Cys57 mutants, thus indicating that its target is Cys57. Moreover, mass spectrometry analysis confirmed that S-glutathionylation of Cys57 takes place also with endogenous PhSOD. Formation of this mixed disulfide in PhSOD protects the enzyme from tyrosine nitration and peroxynitrite inactivation. PhSOD undergoes S-glutathionylation during its overproduction in E. coli cells and in a growing culture of P. haloplanktis. In both cases the extent of glutathionylated PhSOD is enhanced upon cell exposure to oxidative agents. We suggest that S-glutathionylation of PhSOD could represent a further cold-adaptation strategy to improve the antioxidant cellular defence mechanism.  相似文献   
3.
Hepatitis C virus (HCV) is considered one of the most dangerous pathogens since about 3% of the world population is HCV-infected and the virus is a major cause of hepatitis, cirrhosis, and liver carcinoma. A need for a more efficient therapy prompted us to investigate new class of compounds, such as tropolone derivatives that possess antiviral, antibacterial, and antifungal activities. To synthesize bromo- and morpholinomethyl-analogues of tropolone, the previously reported methods were modified. The influence of new derivatives on the activity of the helicase and NTP-ase of HCV was investigated. The most potent inhibitory effect in the fluorometric helicase assay was exerted by 3,7-dibromo-5-morpholinomethyltropolone, for which the IC50 value was at low micromolar range. All the morpholino-derivatives had inhibitory activities higher than those of the non-modified analogues. Low toxicity in a yeast-based toxicity assay indicates that these compounds could be further modified to develop potent inhibitors of the HCV helicase and of viral replication.  相似文献   
4.
Chloro-, bromo- and methyl- analogues of 1H-benzimidazole and 1H-benzotriazole and their N-alkyl derivatives have been synthesized and tested in vitro against the protozoa Acanthamoeba castellanii. The results indicate that 5,6-dimethyl-1H-benzotriazole (11) and 5,6-dibromo-1H-benzotriazole (14) have higher efficacy than the antiprotozoal agent chlorohexidine.  相似文献   
5.
Diallyl trisulfide (DATS) has been shown to induce the formation of reactive oxygen species (ROS) in prostate cancer cells, which was accompanied by a decrease in the ferritin protein level and an increase in the labile iron pool (LIP). However, the mechanism of the ferritin degradation has not been fully elucidated. In this paper we demonstrate that DATS-induced ROS formation depends on p66Shc. In cells stably expressing a dominant negative mutant of p66Shc (p66ShcS36A), DATS did not induce ROS formation. In addition, in cells expressing p66ShcS36A neither an increase in ferritin H degradation nor an increase in LIP were observed. Cells stably expressing p66ShcS36A also possess higher levels of ferritin H compared to PC-3 cells transfected with an empty vector. Moreover, DATS-induced G2/M arrest is completely abrogated in cells expressing p66ShcS36A. Mouse embryonic fibroblasts (MEFs) derived from wild-type (WT) or p66Shc knockout mouse have been used to evaluate if p66Shc involvement in DATS-induced signaling is cell specific. DATS induced G2/M arrest in WT MEFs but had no effect in the p66Shc−/− cell line. Moreover, increases in LIP and ROS formation were significantly attenuated in p66Shc−/− MEFs treated with DATS.  相似文献   
6.
The aerotolerance of the lactic - fermentative bacterium Streptococcus thermophilus is mainly based on the key antioxidant function of superoxide dismutase (StSOD). In this work, the comparison of recombinant StSOD (rStSOD) forms obtained from two different initiation triplets indicated that the enzyme from S. thermophilus strain LMG 18311 spans 201 residues. rStSOD is organised as a homodimer, even though protein aggregates are formed in concentrated solutions. The capability of binding and exchanging Fe or Mn in the active site classifies rStSOD as a putative cambialistic enzyme; the moderate preference for iron is counteracted by a 1.5-fold higher activity measured for the Mn-containing form. The enzyme is thermostable, being its half-inactivation time 10 min at 73.5°C; the energetic parameters of the heat inactivation process are regulated by the level of Mn cofactor. The effect of Mn content on the rStSOD sensitivity towards inhibitors and inactivators was also evaluated. Sodium azide acts as a weak inhibitor of rStSOD and its Mn content does not greatly affect this sensitivity. Concerning the physiological inactivator hydrogen peroxide, the Mn-enriched rStSOD displays a great resistance; a moderate sensitivity is instead observed in the presence of a low Mn content. Contrary to hydrogen peroxide, sodium peroxynitrite is a powerful inactivator, a behaviour enhanced in the Mn-enriched enzyme. All these results were compared with the corresponding data previously reported for the cambialistic SOD from the taxonomically related S. mutans. In S. thermophilus the regulation of the enzyme functions by the Mn content appears less relevant with respect to S. mutans.  相似文献   
7.
Derivatives of 4,5,6,7-tetrabromobenzotriazole (TBBt) and 4,5,6,7-tetrabromobenzimidazole (TBBi) with IC(50) in the low micromolar range and with high selectivity belong to the most promising inhibitors of protein kinase CK2 (casein kinase 2). Treatment of various cell lines with TBBt, TBBi or 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole (DMAT) affected cell viability with simultaneous induction of apoptosis. The inhibitory activity of newly synthesized hydroxyalkyl derivatives of TBBi and TBBt depends on the length of the alkyl chain. The hydroxypropyl substituted derivatives show higher or similar inhibitory activity than the parent compounds when tested with human protein kinase CK2. To test the distribution of this class of compounds in mammals, [(14)C] TBBi was synthesized.  相似文献   
8.
9.
New derivatives of 4,5,6,7-tetrabromo-1H-1,2,3-benzotriazole (TBBt), 4,5,6,7-tetrabromo-1H-benzimidazole (TBBi), and N-substituted tetrabromophthalimides were synthesized and their effect on the activity of human protein kinase CK2 was examined. The most active were derivatives with N-hydroxypropyl substituents (IC50 in 0.32–0.54 μM range) whereas derivatives of phthalimide were almost ineffective.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号