首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   492篇
  免费   33篇
  国内免费   1篇
  2023年   3篇
  2022年   4篇
  2021年   12篇
  2020年   10篇
  2019年   21篇
  2018年   8篇
  2017年   10篇
  2016年   17篇
  2015年   32篇
  2014年   34篇
  2013年   30篇
  2012年   50篇
  2011年   65篇
  2010年   38篇
  2009年   26篇
  2008年   32篇
  2007年   32篇
  2006年   23篇
  2005年   25篇
  2004年   13篇
  2003年   12篇
  2002年   13篇
  2001年   1篇
  1998年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1984年   1篇
  1981年   1篇
  1939年   1篇
排序方式: 共有526条查询结果,搜索用时 15 毫秒
1.
The complete amino acid sequence of histone H3 (135 residues) from the nematode Caenorhabditis elegans has been established. Microheterogeneity occurs at positions 96 and 100 of the chain. The sequences of the nematode H3 isoforms are very similar to the major chain of calf thymus H3 with which they show 4 substitutions in total. The major variant has cysteine in position 96. This is the first report of cysteine in this position in H3 from non-mammalian tissue. An exceptional methylation site has been detected at position 79. Various other sites of secondary modification are of a conservative nature.  相似文献   
2.
Cardiolipin (CL) is a unique dimeric phospholipid that exists almost exclusively in the inner mitochondrial membrane (IMM) in eukaryotic cells. Two chiral carbons and four fatty acyl chains in CL result in a flexible body allowing interactions with respiratory chain complexes and mitochondrial substrate carriers. Due to its high content of unsaturated fatty acids, CL is particularly prone to reactive oxygen species (ROS)-induced oxidative attacks. Under mild mitochondrial damage, CL is redistributed to the outer mitochondrial membrane (OMM) and serves as a recognition signal for dysfunctional mitochondria, which are rapidly sequestered by autophagosomes. However, peroxidation of CL is far greater in response to severe stress than under normal or mild-damage conditions. The accumulation of oxidized CL on the OMM results in recruitment of Bax and formation of the mitochondrial permeability transition pore (MPTP), which releases Cytochrome c (Cyt c) from mitochondria. Over the past decade, the significance of CL in the function of mitochondrial bioenergy has been explored. Moreover, approaches to analyzing CL have become more effective and accurate. In this review, we discuss the unique structural features of CL as well as the current understanding of CL-based molecular mechanisms of mitophagy and apoptosis.  相似文献   
3.
The complete amino acid sequence of the 125-residue photoactive yellow protein (PYP) from Ectothiorhodospira halophila has been determined to be MEHVAFGSEDIENTLAKMDDGQLDGLAFGAIQLDGDGNILQYNAAEGDITGRDPKEVIGKNFFKDVAP+ ++ CTDSPEFYGKFKEGVASGNLNTMFEYTFDYQMTPTKVKVHMKKALSGDSYWVFVKRV. This is the first sequence to be reported for this class of proteins. There is no obvious sequence homology to any other protein, although the crystal structure, known at 2.4 A resolution (McRee, D.E., et al., 1989, Proc. Natl. Acad. Sci. USA 86, 6533-6537), indicates a relationship to the similarly sized fatty acid binding protein (FABP), a representative of a family of eukaryotic proteins that bind hydrophobic molecules. The amino acid sequence exhibits no greater similarity between PYP and FABP than for proteins chosen at random (8%). The photoactive yellow protein contains an unidentified chromophore that is bleached by light but recovers within a second. Here we demonstrate that the chromophore is bound covalently to Cys 69 instead of Lys 111 as deduced from the crystal structure analysis. The partially exposed side chains of Tyr 76, 94, and 118, plus Trp 119 appear to be arranged in a cluster and probably become more exposed due to a conformational change of the protein resulting from light-induced chromophore bleaching. The charged residues are not uniformly distributed on the protein surface but are arranged in positive and negative clusters on opposite sides of the protein. The exact chemical nature of the chromophore remains undetermined, but we here propose a possible structure based on precise mass analysis of a chromophore-binding peptide by electrospray ionization mass spectrometry and on the fact that the chromophore can be cleaved off the apoprotein upon reduction with a thiol reagent. The molecular mass of the chromophore, including an SH group, is 147.6 Da (+/- 0.5 Da); the cysteine residue to which it is bound is at sequence position 69.  相似文献   
4.
The complete amino acid sequence of the 86-residue heme subunit of flavocytochrome c (sulfide dehydrogenase) from the green phototrophic bacterium Chlorobium thiosulfatophilum strain Tassajara has been determined as follows: APEQSKSIPRGEILSLSCAGCHGTDGKSESIIPTIYGRSAEYIESALLDFKSGA- RPSTVMGRHAKGYSDEEIHQIAEYFGSLSTMNN. The subunit has a single heme-binding site near the N terminus, consisting of a pair of cysteine residues at positions 18 and 21. The out-of-plane ligands are apparently contributed by histidine 22 and methionine 60. The molecular weight including heme is 10,014. The heme subunit is apparently homologous to small cytochromes c by virtue of the location of the heme-binding site and its extraplanar ligands. However, the amino acid sequence is closer to Paracoccus sp. cytochrome c554(548) (37%) than it is to the heme subunit from Pseudomonas putida p-cresol methylhydroxylase flavocytochrome c (20%). The flavocytochrome c heme subunit is only 14% similar to the small cytochrome c555 also found in Chlorobium. Secondary structure predictions suggest N- and C-terminal helices as expected, but the midsection of the protein probably folds somewhat differently from the small cytochromes of known three-dimensional structure such as Pseudomonas cytochrome c551. Analyses of the residues near the exposed heme edges of the cytochrome subunits of P. putida and C. thiosulfatophilum flavocytochromes c (assuming homology to proteins of known structure) indicate that charged residues are not conserved, suggesting that electrostatic interactions are not involved in the association of the heme and flavin subunits. The N-terminal sequence of the flavoprotein subunit of flavocytochrome has also been determined. It shows no similarity to the comparable region of the p-cresol methylhydroxylase flavoprotein subunit from P. putida. The flavin-binding hexapeptide, isolated and sequenced earlier (Kenney, W. C., McIntire, W., and Yamanaka, T. (1977) Biochim. Biophys. Acta 483, 467-474), is situated at positions 40-46.  相似文献   
5.
Inhibition of Yersinia protein tyrosine phosphatase by calix[4]arene mono-, bis-, and tetrakis(methylenebisphosphonic) acids as well as calix[4]arene and thiacalix[4]arene tetrakis(methylphosphonic) acids have been investigated. The kinetic studies revealed that some compounds in this class are potent competitive inhibitors of Yersinia PTP with inhibition constants in the low micromolar range. The binding modes of macrocyclic phosphonate derivatives in the enzyme active center have been explained using computational docking approach. The results obtained indicate that calix[4]arenes are promising scaffolds for the development of inhibitors of Yersinia PTP.  相似文献   
6.
Xylose is a second‐most abounded sugar after glucose in lignocellulosic hydrolysates and should be efficiently fermented for economically viable second‐generation ethanol production. Despite significant progress in metabolic and evolutionary engineering, xylose fermentation rate of recombinant Saccharomyces cerevisiae remains lower than that for glucose. Our recent study demonstrated that peroxisomedeficient cells of yeast Ogataea polymorpha showed a decrease in ethanol production from xylose. In this work, we have studied the role of peroxisomes in xylose alcoholic fermentation in the engineered xylose‐utilizing strain of S. cerevisiae. It was shown that peroxisome‐less pex3Δ mutant possessed 1.5‐fold decrease of ethanol production from xylose. We hypothesized that peroxisomal catalase Cta1 may have importance for hydrogen peroxide, the important component of reactive oxygen species, detoxification during xylose alcoholic fermentation. It was clearly shown that CTA1 deletion impaired ethanol production from xylose. It was found that enhancing the peroxisome population by modulation the peroxisomal biogenesis by overexpression of PEX34 activates xylose alcoholic fermentation.  相似文献   
7.
Riboflavin (vitamin B2) is an indispensable nutrient for humans and animals, since it is the precursor of the essential coenzymes flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), involved in variety of metabolic reactions. Riboflavin is produced on commercial scale and is used for feed and food fortification purposes, and in medicine. Until recently, the mutant strains of the flavinogenic yeast Candida famata were used in industry for riboflavin production. Guanosine triphosphate is the immediate precursor of riboflavin synthesis. Therefore, the activation of metabolic flux toward purine nucleotide biosynthesis is a promising approach to improve riboflavin production. The phosphoribosyl pyrophosphate synthetase and phosphoribosyl pyrophosphate amidotransferase are the rate limiting enzymes in purine biosynthesis. Corresponding genes PRS3 and ADE4 from yeast Debaryomyces hansenii are modified to avoid feedback inhibition and cooverexpressed on the background of a previously constructed riboflavin overproducing strain of C. famata. Constructed strain accumulates twofold more riboflavin when compared to the parental strain.  相似文献   
8.
Antonie van Leeuwenhoek - Lignocellulosic biomass is an attractive sustainable platform for fuel ethanol production. Xylose is a second after glucose most abounded sugar in lignocellulosic...  相似文献   
9.
Heart failure (HF) is characterized by asymmetrical autonomic balance. Treatments to restore parasympathetic activity in human heart failure trials have shown beneficial effects. However, mechanisms of parasympathetic-mediated improvement in cardiac function remain unclear. The present study examined the effects and underpinning mechanisms of chronic treatment with the cholinesterase inhibitor, pyridostigmine (PYR), in pressure overload HF induced by transverse aortic constriction (TAC) in mice. TAC mice exhibited characteristic adverse structural (left ventricular hypertrophy) and functional remodelling (reduced ejection fraction, altered myocyte calcium (Ca) handling, increased arrhythmogenesis) with enhanced predisposition to arrhythmogenic aberrant sarcoplasmic reticulum (SR) Ca release, cardiac ryanodine receptor (RyR2) hyper-phosphorylation and up-regulated store-operated Ca entry (SOCE). PYR treatment resulted in improved cardiac contractile performance and rhythmic activity relative to untreated TAC mice. Chronic PYR treatment inhibited altered intracellular Ca handling by alleviating aberrant Ca release and diminishing pathologically enhanced SOCE in TAC myocytes. At the molecular level, these PYR-induced changes in Ca handling were associated with reductions of pathologically enhanced phosphorylation of RyR2 serine-2814 and STIM1 expression in HF myocytes. These results suggest that chronic cholinergic augmentation alleviates HF via normalization of both canonical RyR2-mediated SR Ca release and non-canonical hypertrophic Ca signaling via STIM1-dependent SOCE.  相似文献   
10.
A 5.4-kDa antifungal peptide was purified from Phaseolus vulgaris L. cv. “northeast red bean” using a protocol that entailed affinity chromatography, ion exchange chromatography, and gel filtration. The molecular mass was determined by matrix-assisted laser desorption ionization time-of-flight. The N-terminal amino acid sequence of the peptide was highly homologous to defensins and defensin-like peptides from several plant species. The peptide impeded the growth of a number of pathogenic fungi, including Mycosphaerella arachidicola Khokhr. (IC50 = 1.7 μM), Setosphaeria turcica Luttr., Fusarium oxysporum Schltdl., and Valsa mali Miyabe & G. Yamada. Antifungal activity of the peptide was fully preserved at temperatures up to 100 °C and pH values from 0 to 12. Congo red deposition at the hyphal tip of M. arachidicola was detected after exposure to the peptide, signifying that the peptide had suppressed hyphal growth. The antifungal peptide did not manifest antiproliferative activity toward human breast cancer MCF7 cells and hepatoma HepG2 cells, in contradiction to the bulk of previously reported plant defensins. The data suggest distinct structural requirements for antifungal and antiproliferative activities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号