首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   8篇
  2021年   2篇
  2020年   2篇
  2018年   2篇
  2017年   3篇
  2016年   1篇
  2015年   9篇
  2014年   4篇
  2013年   3篇
  2012年   3篇
  2011年   4篇
  2009年   2篇
  2008年   3篇
  2007年   8篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   4篇
  2002年   2篇
  2001年   1篇
  1995年   1篇
  1991年   1篇
排序方式: 共有58条查询结果,搜索用时 31 毫秒
1.
L-selectin (CD62L), a lectin-like adhesion molecule, mediates lymphocyte homing and leukocyte accumulation at sites of inflammation. Its transmembrane (TM) and intracellular (IC) domains confer clustering of L-selectin on microvilli of resting leukocytes, which is important for L-selectin function. Following activation of protein kinase C (PKC) or calmodulin inhibition, the wild-type (WT) protein is rapidly cleaved in its membrane-proximal ectodomain. To examine whether L-selectin topography or TM/IC domains are involved in this shedding process, we used stable transfectants expressing WT L-selectin (on microvilli) or chimeric molecules consisting of the L-selectin ectodomain linked to the TM/IC domains of CD44 (excluded from microvilli) or CD31 (randomly distributed). PKC activation by PMA altered the cells' surface morphology, but did not induce a redistribution of L-selectin ectodomains. All cell lines shed ectodomains upon PMA activation in a dose-dependent fashion and with similar kinetics. Calmodulin inhibition by trifluoperazine induced shedding in both WT and chimera transfectants. At high trifluoperazine concentrations, shedding of WT L-selectin was significantly more pronounced than that of chimeric molecules. Regardless of the activating stimulus, shedding was blocked by a hydroxamate-based metalloprotease inhibitor, suggesting that ectodomain down-regulation occurred through proteolytic cleavage by identical protease(s). These results show that the recognition site(s) for PKC-induced L-selectin shedding is exclusively contained within the ectodomain; the nature of subsurface structures and surface topography are irrelevant. Shedding induced by calmodulin inhibition has two components: one requires the L-selectin TM/IC domain, and the other is independent of it.  相似文献   
2.
3.
Coordinated regulation of cell migration, cytokine maturation and apoptosis is critical in inflammatory responses. Caspases, a family of cysteine proteases, are known to regulate cytokine maturation and apoptosis. Here, we show that caspase-11, a mammalian pro-inflammatory caspase, regulates cell migration during inflammation. Caspase-11-deficient lymphocytes exhibit a cell-autonomous migration defect in vitro and in vivo. We demonstrate that caspase-11 interacts physically and functionally with actin interacting protein 1 (Aip1), an activator of cofilin-mediated actin depolymerization. The caspase-recruitment domain (CARD) of caspase-11 interacts with the carboxy-terminal WD40 propeller domain of Aip1 to promote cofilin-mediated actin depolymerization. Cells with Aip1 or caspase-11 deficiency exhibit defects in actin dynamics. Using in vitro actin depolymerization assays, we found that caspase-11 and Aip1 work cooperatively to promote cofilin-mediated actin depolymerization. These data demonstrate a novel cell autonomous caspase-mediated mechanism that regulates actin dynamics and mammalian cell migration distinct from the receptor mediated Rho-Rac-Cdc42 pathway.  相似文献   
4.
5.
The cornea is the shield to the foreign world and thus, a primary site for peripheral infections. However, transparency and vision are incompatible with inflammation and scarring that may result from infections. Thus, the cornea is required to perform a delicate balance between fighting infections and preserving vision. To date, little is known about the specific role of antigen-presenting cells in viral keratitis. In this study, utilizing an established murine model of primary acute herpes simplex virus (HSV)-1 keratitis, we demonstrate that primary HSV keratitis results in increased conventional dendritic cells (cDCs) and macrophages within 24 hours after infection. Local depletion of cDCs in CD11c-DTR mice by subconjuntival diphtheria toxin injections, led to increased viral proliferation, and influx of inflammatory cells, resulting in increased scarring and clinical keratitis. In addition, while HSV infection resulted in significant corneal nerve destruction, local depletion of cDCs resulted in a much more severe loss of corneal nerves. Further, local cDC depletion resulted in decreased corneal nerve infection, and subsequently decreased and delayed systemic viral transmission in the trigeminal ganglion and draining lymph node, resulting in decreased mortality of mice. In contrast, sham depletion or depletion of macrophages through local injection of clodronate liposomes had neither a significant impact on the cornea, nor an effect on systemic viral transmission. In conclusion, we demonstrate that corneal cDCs may play a primary role in local corneal defense during viral keratitis and preserve vision, at the cost of inducing systemic viral dissemination, leading to increased mortality.  相似文献   
6.
7.
Macrophytes have a fundamental structuring role in aquatic environments. Several authors have suggested that trophic interactions are particularly mediated by aquatic plants. In the current article, we evaluated the effects of the structural heterogeneity provided by Eichhornia azurea (Kunth) roots on predation and habitat use by the small fish Moenkhausia sanctaefilomenae (Steindachner). We tested the hypotheses that (i) high structural heterogeneity protects macroinvertebrates against predation by M. sanctaefilomenae; (ii) distinct prey types are differently protected by the refuge provided by roots; and (iii) the behavior of M. sanctaefilomenae is affected by the structural heterogeneity provided by macrophyte roots. To test these hypotheses, we performed an experiment in 20 l aquaria in which macroinvertebrates (Cypricercus sp. and Chironomus sp.) were exposed to M. sanctaefilomenae predation for 4 h under three structural heterogeneities, represented by different root densities. High structural heterogeneity protected macroinvertebrates against predation. Additionally, E. azurea roots similarly protected different prey species. The macrophyte spatial structure substantially changed the habitat use of M. sanctaefilomenae. In general, our results corroborated the hypothesis that the structural heterogeneity provided by E. azurea roots significantly affects predation and habitat use by M. sanctaefilomenae. Handling editor: S. Declerck  相似文献   
8.
Vibrio cholerae, the agent of cholera, is a motile non-invasive pathogen that colonizes the small intestine (SI). Most of our knowledge of the processes required for V. cholerae intestinal colonization is derived from enumeration of wt and mutant V. cholerae recovered from orogastrically infected infant mice. There is limited knowledge of the distribution of V. cholerae within the SI, particularly its localization along the villous axis, or of the bacterial and host factors that account for this distribution. Here, using confocal and intravital two-photon microscopy to monitor the localization of fluorescently tagged V. cholerae strains, we uncovered unexpected and previously unrecognized features of V. cholerae intestinal colonization. Direct visualization of the pathogen within the intestine revealed that the majority of V. cholerae microcolonies attached to the intestinal epithelium arise from single cells, and that there are notable regiospecific aspects to V. cholerae localization and factors required for colonization. In the proximal SI, V. cholerae reside exclusively within the developing intestinal crypts, but they are not restricted to the crypts in the more distal SI. Unexpectedly, V. cholerae motility proved to be a regiospecific colonization factor that is critical for colonization of the proximal, but not the distal, SI. Furthermore, neither motility nor chemotaxis were required for proper V. cholerae distribution along the villous axis or in crypts, suggesting that yet undefined processes enable the pathogen to find its niches outside the intestinal lumen. Finally, our observations suggest that host mucins are a key factor limiting V. cholerae intestinal colonization, particularly in the proximal SI where there appears to be a more abundant mucus layer. Collectively, our findings demonstrate the potent capacity of direct pathogen visualization during infection to deepen our understanding of host pathogen interactions.  相似文献   
9.
Gene regulatory networks (GRNs) play a central role in systems biology, especially in the study of mammalian organ development. One key question remains largely unanswered: Is it possible to infer mammalian causal GRNs using observable gene co-expression patterns alone? We assembled two mouse GRN datasets (embryonic tooth and heart) and matching microarray gene expression profiles to systematically investigate the difficulties of mammalian causal GRN inference. The GRNs were assembled based on pieces of experimental genetic perturbation evidence from manually reading primary research articles. Each piece of perturbation evidence records the qualitative change of the expression of one gene following knock-down or over-expression of another gene. Our data have thorough annotation of tissue types and embryonic stages, as well as the type of regulation (activation, inhibition and no effect), which uniquely allows us to estimate both sensitivity and specificity of the inference of tissue specific causal GRN edges. Using these unprecedented datasets, we found that gene co-expression does not reliably distinguish true positive from false positive interactions, making inference of GRN in mammalian development very difficult. Nonetheless, if we have expression profiling data from genetic or molecular perturbation experiments, such as gene knock-out or signalling stimulation, it is possible to use the set of differentially expressed genes to recover causal regulatory relationships with good sensitivity and specificity. Our result supports the importance of using perturbation experimental data in causal network reconstruction. Furthermore, we showed that causal gene regulatory relationship can be highly cell type or developmental stage specific, suggesting the importance of employing expression profiles from homogeneous cell populations. This study provides essential datasets and empirical evidence to guide the development of new GRN inference methods for mammalian organ development.  相似文献   
10.
We evaluated fish assemblage diet and trophic structure in five lakes (Patos, Zé do Paco, Fechada, Ressaco do Pau Véio and das Garças), connected or not with the river. Trophic structure analysis was based on the species whose number of sampled digestive tracts was greater or equal to 10 and ordinated according to a detrended correspondence analysis. We identified seven trophic guilds with the following representatives: (1) Detritivorous–ileophagous: Cyphocharax modestus, Prochilodus lineatus, Steindachnerina insculpta and Loricariichthys platymetopon; (2) Herbivorous: Schizodon borellii and Leporinus lacustris; (3) Benthophagous: Iheringichthys labrosus, Satanoperca pappaterra and Trachydoras paraguayensis; (4) Insectivorous: Astyanax altiparanae, Moenkhausia intermedia and Parauchenipterus galeatus; (5) Piscivorous: Hoplias cf. malabaricus and Serrasalmus marginatus; (6) Carnivorous–carcinophagous: Pimelodus maculatus and (7) Insectivorous–lepidophagous: Roeboides paranensis. The detritivorous–ileophagous guild was the predominant one in the five lakes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号