首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   171篇
  免费   17篇
  188篇
  2023年   2篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2018年   3篇
  2017年   2篇
  2016年   5篇
  2015年   3篇
  2014年   6篇
  2013年   9篇
  2012年   10篇
  2011年   7篇
  2010年   11篇
  2009年   4篇
  2008年   8篇
  2007年   10篇
  2006年   2篇
  2005年   3篇
  2004年   2篇
  2003年   5篇
  2002年   2篇
  2001年   5篇
  1999年   3篇
  1998年   4篇
  1997年   8篇
  1996年   3篇
  1995年   2篇
  1994年   6篇
  1992年   4篇
  1991年   3篇
  1990年   5篇
  1989年   3篇
  1988年   3篇
  1987年   3篇
  1986年   2篇
  1985年   1篇
  1984年   3篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1978年   2篇
  1977年   6篇
  1976年   3篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有188条查询结果,搜索用时 5 毫秒
1.
Clastogenic agents, i.e. agents that can induce chromosome or DNA breakage, have been shown to enhance the rale of direct gene transfer to protoplasts. The effect was analysed at the enzymatic level using protoplast homogenates as well as intact protoplasts. For that purpose existing procedures were modified to enable measurement of DNA polymerase in vivo. In the system used, external DNA was able to enter the cells without the addition of membrane-permeabilizing compounds. When comparing total DNA polymerase activity of protoplasts irradiated with X-rays or UV-light with that of untreated cells we did not observe significant differences. Incubation of protoplasts with high doses of bleomycin affected total DNA polymerase activity negatively. but dideoxythymidine triphosphate-sensitive activity was not influenced. We conclude that the DNA strand-breaks induced by low doses of X-rays. UV-light or bleomycin do not increase the total or the repair-DNA polymerase activity and. therefore. that the increase in the transformation rates after DNA strand-breaking is not preceded by enhanced DNA polymerase activity.  相似文献   
2.
3.
The rate of inhibition of cyclic photophosphorylation in chloroplast thylakoids by the arginine reagent phenylglyoxal was enhanced in the light, i.e., under conditions where membrane energization occurred. Uncouplers, but not energy-transfer inhibitors, prevented the effect of light. Chemical modification of chloroplast thylakoids by phenylglyoxal under dark or in light conditions affected differently the light-induced exchange of tightly bound ADP. In both cases the exchange was less inhibited than photophosphorylation. Complete inhibition of ATPase activity of soluble CF1 was correlated with the incorporation of 8 mol [14C]phenylglyoxal per mol enzyme. About 50% of the incorporated radioactivity was lost at different rates depending on the buffer present and suggesting a change in the stoichiometry of the adduct from 2:1 to 1:1. Inhibition of ATPase and photophosphorylating activities of chloroplasts by modification with [14C]phenylglyoxal in the dark was associated with the incorporation of 1 and 2 mol reagent per mol membrane-bound CF1, respectively. In the light the rate of incorporation was enhanced and both reactions were inactivated when 2 mol [14C]phenylglyoxalCF1 were bound. In all the labelling experiments the radioactivity was mainly recovered from the α- and β-subunits.  相似文献   
4.
When an γ‐irradiated Dy‐, Tm‐, Sm‐ or Mn‐doped CaSO4 crystal is impulsively deformed, two peaks appear in the ML intensity versus time curve, whereby the first ML peak is found in the deformation region and the second in the post‐deformation region of the crystals. In this study, intensities Im1 and Im2 corresponding to first and second ML peaks, respectively, increased linearly with an impact velocity v0 of the piston used to deform the crystals, and times tm1 and tm2 corresponding to the first and second ML peaks, respectively, decreased with impact velocity. Total ML intensity initially increased with impact velocity and then reached a saturation value for higher values of impact velocity. ML intensity increased with increasing γ‐doses and size of crystals. Results showed that the electric field produced as a result of charging of newly‐created surfaces caused tunneling of electrons to the valence band of the hole‐trapping centres. The free holes generated moved in the valence band and their subsequent recombination with electron trapping centres released energy, thereby resulting in excitation of luminescent centres. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
5.
Background: Colorectal carcinogenesis is believed to be a multi-stage process that originates with a localized adenoma, which linearly progresses to an intra-mucosal carcinoma, to an invasive lesion, and finally to metastatic cancer. This progression model is supported by tissue culture and animal model studies, but it is difficult to reconcile with several well-established observations, principally among these are that up to 25% of early stage (Stage I/II), node-negative colorectal cancer (CRC) develop distant metastasis, and that circulating CRC cells are undetectable in peripheral blood samples of up to 50% of patients with confirmed metastasis, but more than 30% of patients with no detectable metastasis exhibit such cells. The mechanism responsible for this diverse behavior is unknown, and there are no effective means to identify patients with pending, or who are at high risk for, developing metastatic CRC.Novel findings: Our previous studies of human breast and prostate cancer have shown that cancer invasion arises from the convergence of a tissue injury, the innate immune response to that injury, and the presence of tumor stem cells within tumor capsules at the site of the injury. Focal degeneration of a capsule due to age or disease attracts lymphocyte infiltration that degrades the degenerating capsules resulting in the formation of a focal disruption in the capsule, which selectively favors proliferating or “budding” of the underlying tumor stem cells. Our recent studies suggest that lymphocyte infiltration also triggers metastasis by disrupting the intercellular junctions and surface adhesion molecules within the proliferating cell buds causing their dissociation. Then, lymphocytes and tumor cells are conjoined through membrane fusion to form tumor-lymphocyte chimeras (TLCs) that allows the tumor stem cell to avail itself of the lymphocyte''s natural ability to migrate and breach cell barriers in order to intravasate and to travel to distant organs. Our most recent studies of human CRC have detected nearly identical focal capsule disruptions, lymphocyte infiltration, budding cells, and the formation of TLCs. Our studies have further shown that age- and type-matched node-positive and -negative CRC have a significantly different morphological and immunohistochemical profile and that the majority of lymphatic ducts with disseminated cells are located within the mucosa adjacent to morphologically normal appearing epithelial structures that express a stem cell-related marker.New hypothesis: Based on these findings and the growth patterns of budding cells revealed by double immunohistochemistry, we further hypothesize that metastatic spread is an early event of carcinogenesis and that budding cells overlying focal capsule disruptions represent invasion- and metastasis-initiating cells that follow one of four pathways to progress: (1) to undergo extensive in situ proliferation leading to the formation of tumor nests that subsequently invade the submucosa, (2) to migrate with associated lymphocytes functioning as “seeds” to grow in new sites, (3) to migrate and intravasate into pre-existing vascular structures by forming TLCs, or (4) to intravasate into vascular structures that are generated by the budding cells themselves. We also propose that only node-positive cases harbor stem cells with the potential for multi-lineage differentiation and unique surface markers that permit intravasation.  相似文献   
6.
7.
Egeria densa, a submersed aquatic species, was exposed to different treatments under UV-B radiation, and the response of phosphoenolpyruvate carboxylase (PEPC) and NADP-malic enzyme (NADP-ME) was determined. Exposure to UV-B radiation for 4 h per day over 7–16 days caused an increase in both enzymes, together with an increase in the activity of some isoforms of several enzymes involved in the antioxidant metabolism, such as superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT) and peroxidase (POD). The content of chlorophylls and carotenoids was considerably decreased, suggesting that degradation or repression of the synthesis of these molecules may be occurring after UV-B exposure. Reactive oxygen species (ROS) were also required for UV-B induction of PEPC and NADP-ME, as the addition of ascorbic acid before UV-B treatment prevented the induction of these enzymes, while salicylic acid was not effective in inducing NADP-ME but increased the expression of the lower molecular mass isoform of PEPC. On the other hand, damage to the photosynthetic machinery may be occurring after exposure to UV-B radiation for 8 per day over 1–2 days, as indicated by a decrease in the levels of Rubisco, PEPC and NADP-ME. Some of the enzymes involved in the antioxidant metabolism, such as CAT and APX, were also sensitive to continuous exposure, evidenced by a decrease in their activity. In this way, in E. densa, several enzymes involved in different metabolic pathways showed a distinct response, depending on the UV-B treatment. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
8.
Different preparations of antibodies against 62 kDa NADP-malic enzyme (NADP-ME) from purified maize leaves cross-react with a 72 kDa protein from diverse tissues in many species. A 72 kDa protein, suggested to be a non-photosynthetic NADP-ME, has been purified from several plant species. However, to date, a cDNA coding for this putative 72 kDa NADP-ME has not been isolated. The screening of maize and tobacco leaf expression libraries using antibodies against purified 62 kDa NADP-ME allowed the identification of a heat shock protein (Hsp70). In addition, tandem mass spectrometry (MS/MS) studies indicate that along with NADP-ME, a 72 kDa protein, identified as an Hsp70 and reacting with the antibodies, is also purified from maize roots. On the other hand, the screening of a maize root cDNA library revealed the existence of a cDNA that encodes a mature 66 kDa NADP-ME. These results suggest that the 72 kDa protein is not actually an NADP-ME but in fact an Hsp70, at least in maize and tobacco. Probably, NADP-ME-Hsp70 association, taking place at least when preparing crude extracts, can lead to a co-purification of the proteins and can thus explain the cross-reaction of the antibodies. In the present work, we analyse and discuss a probable interaction of NADP-ME with Hsp70.  相似文献   
9.
Apolipoprotein-B100 (apoB100) is the essential protein for the assembly and secretion of very low density lipoproteins (VLDL) from liver. The hepatoma HepG2 cell line has been the cell line of choice for the study of synthesis and secretion of human apoB-100. Despite the general use of HepG2 cells to study apoB100 metabolism, they secrete relatively dense, lipid-poor particles compared with VLDL secreted in vivo. Recently, Huh-7 cells were adopted as an alternative model to HepG2 cells, with the implicit assumption that Huh-7 cells were superior in some respects of lipoprotein metabolism, including VLDL secretion. In this study we addressed the hypothesis that the spectrum of apoB100 lipoprotein particles secreted by Huh-7 cells more closely resembles the native state in human liver. We find that Huh-7 cells resemble HepG2 cells in the effects of exogenous lipids, microsomal triglyceride transfer protein (MTP)-inhibition, and proteasome inhibitors of apoB100 secretion, recovery, and degradation. In contrast to HepG2 cells, however, MEK-ERK inhibition does not correct the defect in VLDL secretion. Huh-7 cells do not appear to offer any advantages over HepG2 cells as a general model of human apoB100-lipoprotein metabolism.  相似文献   
10.
Summary In P. hybrida and B. nigra an enhancement of transformation rates (direct gene transfer) of about six to seven-fold was obtained after irradiation of protoplasts with 12.5 Gy (X-ray). The effect of protoplast irradiation was similar in experiments where protoplasts were irradiated 1h before transformation (X-ray/DNA) or 1h after completion of the transformation procedure (DNA/X-ray). Increased X-ray doses up to 62.5 Gy resulted in further enhancement of percentages of transformed colonies, indicating a correlation between relative transformation frequencies (RTF) and the doses applied. Estimation of degradation rates of plasmid sequences in plant protoplasts yielded a reduction of plasmid concentration to 50% 8–12 h after transformation. In 1-day-old protoplasts, the level of plasmid fragments dropped to 0%–10% compared to 1h after transformation. The results demonstrate that the integration rates of plasmid sequences into the plant genome may in part be governed by DNA repair mechanisms. This could be an explanation for the observed genotypic dependence of transformation rates in different plant species and plant genotypes. Gene copy number reconstructions revealed enhanced integration rates of plasmid sequences in transformed colonies derived from irradiated protoplasts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号