首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
  2020年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2012年   1篇
  2011年   3篇
  2010年   3篇
  2007年   1篇
  2005年   1篇
  2004年   1篇
  2000年   1篇
  1999年   1篇
  1994年   1篇
  1991年   1篇
排序方式: 共有18条查询结果,搜索用时 218 毫秒
1.
Across all taxa, amphibians exhibit some of the strongest phenological shifts in response to climate change. As climates warm, amphibians and other animals are expected to breed earlier in response to temperature cues. However, if species use fixed cues such as daylight, their breeding timing might remain fixed, potentially creating disconnects between their life history and environmental conditions. Wood frogs Rana sylvatica are a cold-adapted species that reproduce in early spring, immediately after breeding ponds are free of ice. We used long-term surveys of wood frog oviposition timing in 64 breeding ponds over 20 yr to show that, despite experiencing a warming of 0.29°C per decade in annual temperature, wood frog breeding phenology has shifted later by 2.8 d since 2000 (1.4 d per decade; 4.8 d per °C). This counterintuitive pattern is likely the result of changes in the timing of snowpack accumulation and melting. Finally, we used relationships between climate and oviposition between 2000 and 2018 to hindcast oviposition dates from climate records to model longer-term trends since 1980. Our study indicates that species can respond to fine-grained seasonal climate heterogeneity within years that is not apparent or counterintuitive when related to annual trends across years.  相似文献   
2.
The synthesis of a series of C3'-cis-substituted carboxycyclopropyl glycines bearing a wide variety of functional groups is described, and the structure-activity relationship for this series as agonists of group II metabotropic glutamate receptors is reported.  相似文献   
3.
A series of square planar cobalt(II) compounds bearing tetradentate β-ketoaminato ligands with variation in the number of ―CF3 ligand substituents has been prepared and structurally and spectroscopically characterized. The fluorinated β-ketoamine ligands were prepared utilizing a multistep reaction sequence employing a silylenol protecting group. An additional tetrahedral cobalt compound bearing two bidentate β-ketoaminato ligands was also prepared and characterized.Cytotoxic activity of the cobalt-containing complexes was evaluated using six human cell lines; including two different prostate cancer cell lines (PC-3 and VCaP), acute monocytic leukemia (THP-1), astrocytoma (U-373 MG), hepatocellular carcinoma (HepG2), and neuroblastoma (SH-SY5Y) cells. The cobalt compounds are more active than their corresponding ligands. The activity is cell type specific; the cobalt compounds exhibit strong activity against human prostate cancer and monocytic leukemia cells but weak or no activity against neuroblastoma, astrocytoma, and liver carcinoma cells. Activity generally increases with a greater number of ―CF3 substituents, and square planar complexes exhibit greater activity than the tetrahedral derivative. The mechanisms of activity against human PC-3 prostate cancer cells involve caspase-3 and two different mitogen-activated protein kinases. The addition of a thiol antioxidant reduced cytotoxicity, suggesting the possible involvement of reactive oxygen species. These cobalt complexes may represent a novel class of cytotoxic drugs selective towards certain types of tumors.  相似文献   
4.
Much evidence is available that inflammation contributes to the development of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease and Huntington's disease. Our review investigates how well current mouse models reflect this aspect of the pathogenesis.Transgenic models of AD have been available for several years and are the most extensively studied. Modulation of cytokine levels, activation of microglia and, to a lesser extent, activation of the complement system have been reported. Mouse models of PD and HD so far show less evidence for the involvement of inflammation.An increasing number of transgenic mouse strains is being created to model human neurodegenerative diseases. A perfect model should reflect all aspects of a disease. It is important to evaluate continuously the models for their match with the human disease and reevaluate them in light of new findings in human patients.Although none of the transgenic mouse models recapitulates all aspects of the human disorder they represent, all models have provided valuable information on basic molecular pathways. In particular, the mouse models of Alzheimer disease have also led to the development of new therapeutic strategies such as vaccination and modulation of microglial activity.  相似文献   
5.
A novel dipyrazole ethandiamide compound and acid chloride of pyrazolo[3,4-d]pyrimidine 4(5H)-one were prepared and reacted with a number of nucleophiles. The resultant novel compounds were tested in several in vitro and in vivo assays. Three compounds inhibited the secretion of neurotoxins by human THP-1 monocytic cells at concentrations that were not toxic to these cells. They also partially inhibited both cyclooxygenase-1 and -2 isoforms. In animal studies, two compounds were notable for their anti-inflammatory activity that was comparable to that of the clinically available cyclooxygenase-2 inhibitor celecoxib. Modeling studies by using the molecular operating environment module showed comparable docking scores for the two enantiomers docked in the active site of cyclooxygenase-2.  相似文献   
6.
Novel pyrazolyl-2,4-thiazolidinediones were prepared via the reaction of appropriate pyrazolecarboxaldehydes with 2,4-thiazolidinediones and substituted benzyl-2,4-thiazolidinediones. The resultant compounds were first evaluated for their anti-inflammatory and neuroprotective properties in vitro. The active compounds were further studied in vivo by using the formalin-induced paw edema and the turpentine oil-induced granuloma pouch bioassays. We identified four novel compounds that showed protective effects in vitro at non-toxic concentrations, and were also effective in the animal models of acute and sub-acute inflammation.  相似文献   
7.
Cardiolipin, an anionic phospholipid found primarily in the inner mitochondrial membrane, has many well-defined roles within the peripheral tissues, including the maintenance of mitochondrial membrane fluidity and the regulation of mitochondrial functions. Within the central nervous system (CNS), cardiolipin is found within both neuronal and non-neuronal glial cells, where it regulates metabolic processes, supports mitochondrial functions, and promotes brain cell viability. Furthermore, cardiolipin has been shown to act as an elimination signal and participate in programmed cell death by apoptosis of both neurons and glia. Since cardiolipin is associated with regulating brain homeostasis, the modification of its structure, or even a decrease in the overall levels of cardiolipin, can result in mitochondrial dysfunction, which is a characteristic feature of many diseases. In this review, we outline the various functions of cardiolipin within the cells of the CNS, including neurons, astrocytes, microglia, and oligodendrocytes. In addition, we discuss the role cardiolipin may play in the pathogenesis of the neurodegenerative disorders Alzheimer’s disease and Parkinson’s disease, as well as traumatic brain injury.  相似文献   
8.
Summary 1. In diverse tissues, acetylcholinesterase appears to play a critical role in the functional state of cells completely dependent of cholinergic transmission. However, very little is known about the mechanisms and actual molecular structures mediating the fundamental interactions between this protein and the cellular membrane.2. In this study, peritoneal macrophages were used as a model system to study the possible interaction between acetylcholinesterase, acting in a non-cholinergic capacity, and the cellular membrane.3. When acetylcholinesterase was incubated with macrophages harvested from rat peritoneum, the rate of oxygen consumption was increased in a concentration-dependent manner that was independent of mitochondrial block with sodium cyanide. Furthermore, heat inactivation of enzymatic activity or application of BW 284C51 at a concentration which totally blocks catalytic activity did not eliminate the effect.4. In contrast, incubation with bovine serum albumin or butyrylcholinesterase actually retarded oxygen consumption.5. The effect of acetylcholinesterase depended on the presence of divalent cations and was inhibited by mannan andd-mannose, but notd-galactose. It is concluded that acetylcholinesterase can induce a respiratory burst in macrophages independent of its conventional catalytic site but involving either the mannose receptor of the monocyte-derived macrophage or a possible sugar binding site on acetylcholinesterase itself.  相似文献   
9.
Benzothiazole amides were identified as TRPV1 antagonists from high throughput screening using recombinant human TRPV1 receptor and structure-activity relationships were explored to pinpoint key pharmacophore interactions. By increasing aqueous solubility, through the attachment of polar groups to the benzothiazole core, and enhancing metabolic stability, by blocking metabolic sites, the drug-like properties and pharmokinetic profiles of benzothiazole compounds were sufficiently optimized such that their therapeutic potential could be verified in rat pharmacological models of pain.  相似文献   
10.
Problem-based learning (PBL) can be described as a learning environment where the problem drives the learning. This technique usually involves learning in small groups, which are supervised by tutors. It is becoming evident that PBL in a small-group setting has a robust positive effect on student learning and skills, including better problem-solving skills and an increase in overall motivation. However, very little research has been done on the educational benefits of PBL in a large classroom setting. Here, we describe a PBL approach (using tutorless groups) that was introduced as a supplement to standard didactic lectures in University of British Columbia Okanagan undergraduate biochemistry classes consisting of 45-85 students. PBL was chosen as an effective method to assist students in learning biochemical and physiological processes. By monitoring student attendance and using informal and formal surveys, we demonstrated that PBL has a significant positive impact on student motivation to attend and participate in the course work. Student responses indicated that PBL is superior to traditional lecture format with regard to the understanding of course content and retention of information. We also demonstrated that student problem-solving skills are significantly improved, but additional controlled studies are needed to determine how much PBL exercises contribute to this improvement. These preliminary data indicated several positive outcomes of using PBL in a large classroom setting, although further studies aimed at assessing student learning are needed to further justify implementation of this technique in courses delivered to large undergraduate classes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号