首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  2021年   1篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
  2006年   1篇
排序方式: 共有5条查询结果,搜索用时 31 毫秒
1
1.
2.
The role of gene body methylation, which represents a major part of methylation in DNA, remains mostly unknown. Evidence based on the CpG distribution associates its presence with nucleosome positioning and alternative splicing. Recently, it was also shown that cytosine methylation influences splicing. However, to date, there is no methylation-based data on the association of methylation with alternative splicing and the distribution in exonic splicing enhancers (ESEs). We presently report that, based on the computational analysis of the Human Epigenome Project data, CpG hypermethylation (>80%) is frequent in alternatively spliced sites (particularly in noncanonical) but not in alternate promoters. The methylation frequency increases in sequences containing multiple putative ESEs. However, significant differences in the extent of methylation are observed among different ESEs. Specifically, moderate levels of methylation, ranging from 20% to 80%, are frequent in SRp55-binding elements, which are associated with response to extracellular conditions, but not in SF2/ASF, primarily responsible for alternative splicing, or in CpG islands. Finally, methylation is more frequent in the presence of AT repeats and CpGs separated by 10 nucleotides and lower in adjacent CpGs, probably indicating its dependence on helical formations and on the presence of nucleosome positioning-related sequences. In conclusion, our results show the regulation of methylation in ESEs and support its involvement in alternative splicing.  相似文献   
3.
All exonic CG sequences in p53 are methylated; this epigenetic modification is correlated with frequent G:C-->A:T transitions in p53. Recent reports reveal the presence in p53 of non-CG methylation in CC and CCC sequences, complementary to sites of selective guanosine adduct formation (GG and GGG), and the association of genetic instability with methylation at repetitive sequences. We presently investigated the distribution of methylation sites and repetitive elements in silent and nonsense p53 mutations (2051) among the IARC's TP53 somatic mutation database for exons 5-8. Silent mutations are nonrandom, but mostly involve G:C-->A:T transitions (62%); in particular C-->T mutations (39% of all silent mutations) are mostly correlated with CC and CCC sequences, while G-->A mutations with GG sequences. Sequence analysis of all non-G:C-->A:T silent mutations reveals the frequent formation of new methylation sites (CG), new CCC and GGG sequences in the resulting sequence, refinement of symmetry elements at interrupted microsatellite-like sequences and formation of small repeats (55.3%). The G:C-->A:T silent mutations characterize cancers associated with cigarette smoking (e.g. bladder or lung and bronchus cancer versus colorectal cancer); on the contrary, non-G:C-->A:T silent mutations have similar frequencies in most cancers. Nonsense mutations in exons 5-8, all resulting in mutants lacking amino acids 307-393, which are crucial for p53 activity, were also analyzed. The frequency of nonsense mutations is higher at methylated sites or repeats 1-2 nucleotides removed from methylation sites. Frameshift mutations are also more frequent at repeated sequences. The frequent G:C-->A:T silent mutations could indicate that CC and CCC sequences of exons 5-8 are occasionally targets of non-CpG methylation of cytosine. This process of de novo methylation in the presence of microsatellite-like sequences and small repeats might influence the genetic stability of a variety of genes.  相似文献   
4.

Background

Testing for tumor specific mutations on routine formalin-fixed paraffin-embedded (FFPE) tissues may predict response to treatment in Medical Oncology and has already entered diagnostics, with KRAS mutation assessment as a paradigm. The highly sensitive real time PCR (Q-PCR) methods developed for this purpose are usually standardized under optimal template conditions. In routine diagnostics, however, suboptimal templates pose the challenge. Herein, we addressed the applicability of sequencing and two Q-PCR methods on prospectively assessed diagnostic cases for KRAS mutations.

Methodology/Principal Findings

Tumor FFPE-DNA from 135 diagnostic and 75 low-quality control samples was obtained upon macrodissection, tested for fragmentation and assessed for KRAS mutations with dideoxy-sequencing and with two Q-PCR methods (Taqman-minor-groove-binder [TMGB] probes and DxS-KRAS-IVD). Samples with relatively well preserved DNA could be accurately analyzed with sequencing, while Q-PCR methods yielded informative results even in cases with very fragmented DNA (p<0.0001) with 100% sensitivity and specificity vs each other. However, Q-PCR efficiency (Ct values) also depended on DNA-fragmentation (p<0.0001). Q-PCR methods were sensitive to detect ≤1% mutant cells, provided that samples yielded cycle thresholds (Ct) <29, but this condition was met in only 38.5% of diagnostic samples. In comparison, FFPE samples (>99%) could accurately be analyzed at a sensitivity level of 10% (external validation of TMGB results). DNA quality and tumor cell content were the main reasons for discrepant sequencing/Q-PCR results (1.5%).

Conclusions/Significance

Diagnostic targeted mutation assessment on FFPE-DNA is very efficient with Q-PCR methods in comparison to dideoxy-sequencing. However, DNA fragmentation/amplification capacity and tumor DNA content must be considered for the interpretation of Q-PCR results in order to provide accurate information for clinical decision making.  相似文献   
5.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号