首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   166篇
  免费   7篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2020年   3篇
  2019年   2篇
  2018年   1篇
  2017年   3篇
  2016年   3篇
  2015年   3篇
  2014年   5篇
  2013年   12篇
  2012年   8篇
  2011年   11篇
  2010年   4篇
  2009年   6篇
  2008年   10篇
  2007年   13篇
  2006年   7篇
  2005年   5篇
  2004年   14篇
  2003年   7篇
  2002年   8篇
  2001年   4篇
  2000年   8篇
  1999年   10篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   4篇
  1993年   1篇
  1992年   4篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1985年   2篇
  1984年   1篇
  1979年   1篇
  1976年   1篇
排序方式: 共有173条查询结果,搜索用时 15 毫秒
1.
The EphA2 receptor tyrosine kinase plays a central role in the regulation of cell adhesion and guidance in many human tissues. The activation of EphA2 occurs after proper dimerization/oligomerization in the plasma membrane, which occurs with the participation of extracellular and cytoplasmic domains. Our study revealed that the isolated transmembrane domain (TMD) of EphA2 embedded into the lipid bicelle dimerized via the heptad repeat motif L535X3G539X2A542X3V546X2L549 rather than through the alternative glycine zipper motif A536X3G540X3G544 (typical for TMD dimerization in many proteins). To evaluate the significance of TMD interactions for full-length EphA2, we substituted key residues in the heptad repeat motif (HR variant: G539I, A542I, G553I) or in the glycine zipper motif (GZ variant: G540I, G544I) and expressed YFP-tagged EphA2 (WT, HR, and GZ variants) in HEK293T cells. Confocal microscopy revealed a similar distribution of all EphA2-YFP variants in cells. The expression of EphA2-YFP variants and their kinase activity (phosphorylation of Tyr588 and/or Tyr594) and ephrin-A3 binding were analyzed with flow cytometry on a single cell basis. Activation of any EphA2 variant is found to occur even without ephrin stimulation when the EphA2 content in cells is sufficiently high. Ephrin-A3 binding is not affected in mutant variants. Mutations in the TMD have a significant effect on EphA2 activity. Both ligand-dependent and ligand-independent activities are enhanced for the HR variant and reduced for the GZ variant compared with the WT. These findings allow us to suggest TMD dimerization switching between the heptad repeat and glycine zipper motifs, corresponding to inactive and active receptor states, respectively, as a mechanism underlying EphA2 signal transduction.  相似文献   
2.
The structure of [Val1]gramicidin A incorporated into sodium dodecyl-d25 sulphate micelles has been studied by two-dimensional proton NMR spectroscopy. Analysis of nuclear Overhauser effects, spin-spin couplings and solvent accessibility of NH groups show that the conformation of the Na+ complex of gramicidin A in detergent micelles, which in many ways mimic the phospholipid bilayer of biomembranes, is an N-terminal to N-terminal (head-to-head) dimer (Formula: see text) formed by two right-handed, single-stranded beta 6.3 helices with 6.3 residues per turn, differing from Urry's structure by handedness of the helices.  相似文献   
3.
The IGFs (IGF-I and IGF-II) are essential for normal mammalian growth and development. Their actions are mediated primarily by their interactions with the type I IGF receptor (IGF-I receptor), a transmembrane tyrosine kinase. The ligands and the IGF-I receptor are structurally related to insulin and to the insulin receptor, respectively. Analysis of evolutionary conservation has often provided insights into essential regions of molecules such as hormones and their receptors. The genes for insulin and IGFs have been partially characterized in a number of vertebrate species extending evolutionarily from humans as far back as fish. The sequences of the exons encoding the mature insulin and IGF peptides are highly conserved among vertebrate species, and IGF-I-Iike molecules are found in species whose origins extend back as much as 550 million years. The insulin receptor is also highly conserved in vertebrate species, and an insulinreceptor-like molecule has been characterized in Drosophila. In contrast, IGF-I receptors have only been characterized in mammalian species and partially studied in Xenopus, in which the tyrosine kinase domain is highly conserved. Studies are presently being undertaken to analyze in more detail the regulation of the genes encoding this important family of growth factors and the structure/function relationships in the gene products themselves. © 1993 Wiley-Liss, Inc.  相似文献   
4.
Zervamicin IIB is a member of the alpha-aminoisobutyric acid containing peptaibol antibiotics. A new procedure for the biosynthetic preparation of the uniformly 13C- and 15N-enriched peptaibol is described This compound was isolated from the biomass of the fungus-producer Emericellopsis salmosynnemata strain 336 IMI 58330 obtained upon cultivation in the totally 13C, 15N-labelled complete medium. To prepare such a medium the autolysed biomass and the exopolysaccharides of the obligate methylotrophic bacterium Methylobacillus flagellatus KT were used. This microorganism was grown in totally 13C, 15N-labelled minimal medium containing 13C-methanol and 15N-ammonium chloride as the only carbon and nitrogen sources. Preliminary NMR spectroscopic analysis indicated a high extent of isotope incorporation (> 90%) and led to the complete 13C- and 15N-NMR assignment including the stereospecific assignment of Aib residues methyl groups. The observed pattern of the structurally important secondary chemical shifts of 1H(alpha), 13C=O and 13C(alpha) agrees well with the previously determined structure of zervamicin IIB in methanol solution.  相似文献   
5.
Summary A method for quantification of distances between amide hydrogens using only the 3D NOESY-HMQC experiment recorded on a 15N-labelled protein is presented. This method is based on an approximate expression of the NOE intensities between amide hydrogens obtained from continuum modelling of the non-amide spins; this expression is used in a distance calculation algorithm. The algorithm has been named CROWD, standing for Continuum approximation of Relaxati On path Ways between Dilute spins. This approximation as well as the CROWD algorithm are tested on a simulated case; the CROWD algorithm is then applied to experimental data, measured on a fragment of bacteriorhodopsin.  相似文献   
6.
Summary Two-dimensional 1H NMR techniques were used to determine the spatial structure of ectatomin, a toxin from the venom of the ant Ectatomma tuberculatum. Nearly complete proton resonance assignments for two chains of ectatomin (37 and 34 amino acid residues, respectively) were obtained using 2D TOCSY, DQF-COSY and NOESY experiments. The cross-peak volumes in NOESY spectra were used to define the local structure of the protein and generate accurate proton-proton distance constraints employing the MARDIGRAS program. Disulfide bonds were located by analyzing the global fold of ectatomin, calculated with the distance geometry program DIANA. These data, combined with data on the rate of exchange of amide protons with deuterium, were used to obtain a final set of 20 structures by DIANA. These structures were refined by unrestrained energy minimization using the CHARMm program. The resulting rms deviations over 20 structures (excluding the mobile N- and C-termini of each chain) are 0.75 ? for backbone heavy atoms, and 1.25 ? for all heavy atoms. The conformations of the two chains are similar. Each chain consists of two α-helices and a hinge region of four residues; this forms a hairpin structure which is stabilized by disulfide bridges. The hinge regions of the two chains are connected together by a third disulfide bridge. Thus, ectatomin forms a four-α-helical bundle structure.  相似文献   
7.
Abstract

Conformation of 20-residue peptide E5, an analog of the fusion peptide of influenza virus hemagglutinin, was explored by Monte-Carlo technique starting with the fully buried in the membrane ideal α-helix. The lipid bilayer (of 30 Å width) together with surrounding water were modeled by the atomic solvation parameters. During the simulation, residues 2–18 of the peptide retained α-helical conformation, and the peptide was found to be partially immersed into the bilayer. In the resulting low-energy conformers, the N-terminus was buried inside the membrane, its position with respect to the bilayer surface (ZNT) being varied from 2.5 to 7.5 Å, and the orientation of the helical axis relative to the membrane plane (Θ) – from 10 to 35°. The low-energy conformers (below -200kcal/mol) were clustered in the space (ZNT, Θ) into 4 groups. To select low-energy states of the peptide compatible with NMR data, we calculated pKa values of E5 ionizable groups and compared them with the experimental values. It was shown that the best correlation coefficient (0.87) and rmsd (0.68 in pH units) were obtained for the group of states which is characterized by Θ = 15–19° and ZNT = 3.5–4.5Å.  相似文献   
8.
Abstract

Lipid bilayer plays a crucial role in folding of membrane peptides and their stabilization in the membrane-bound state. Correct treatment of the media effects is thus essential for realistic simulations of peptides in bilayers. Previously (Volynsky et al., 1999), we proposed an efficient solvation model which mimics heterogeneous membrane-water system. The model is based on combined employment of atomic solvation parameters for water and hydrocarbon, which approximate hydrated headgroups and acyl chains of lipids, respectively. In this study, the model is employed in non-restrained Monte Carlo simulations of several peptides: totally apolar 20-residue poly-L-Leu, hydrophobic peptide with polar edges, and strongly amphiphilic pep-tide. The principal goals are: to explore energy landscape of these peptides in membrane; to characterize the structures of low-energy states and their orientations with respect to the bilayer. Simulations were performed starting from different structures (unordered or helical) and orientations. It was found that the membrane environment significantly promotes an α-helical conformation for all the peptides, while their energetically favourable orientations are quite different. Thus, poly-Leu was immobilized inside the membrane, the hydrophobic peptide with polar termini adapted transbilayer orientation, whereas the amphiphilic peptide stayed on the lipid-water interface in peripherial orientation. Energy barriers between different states were characterized. The computational results were compared with the experimental structural data.  相似文献   
9.
Receptor tyrosine kinases (RTKs) play an important role in intercellular signal transduction through the plasma membrane. RTKs are integral membrane proteins activated upon lateral homo- or heterodimerization involving their transmembrane domain. The polymorphism and mutations in RTK transmembrane (TM) domains are directly associated with a number of human diseases. The family of epidermal growth factor receptors, ErbB, is an important class of RTKs participating in human cell growth, development, and differentiation. In order to investigate the influence of pathogenic mutations in ErbB TM domains on the structural and dynamic properties of these receptors and on specific interactions of their TM domains, we have developed highly effective systems of bacterial expression and purification of recombinant transmembrane fragments ErbB2641–684 with pro-oncogenic substitution of Val659 by Glu or Gln. Transmembrane fragments were obtained in Escherichia coli BL21 (DE3) pLysS as a fusion protein with thioredoxin A. The purification protocol includes immobilized metal ion affinity chromatography (IMAC) and cation-exchange chromatography. The application of the protease Thrombin for hybrid protein hydrolysis considerably reduces financial expenditure as compared to the analogous protocols. The described techniques allow obtaining the milligram quantities of ErbB2 transmembrane fragments and its 15N-/[15N, 13C]-isotope-labeled derivatives for the analysis of their spatial structure using high-resolution heteronuclear NMR spectroscopy in a membrane-mimicking milieu.  相似文献   
10.
Antiamoebin I (Aam-I) is a membrane-active peptaibol antibiotic isolated from fungal species belonging to the genera Cephalosporium, Emericellopsis, Gliocladium, and Stilbella. Antiamoebin I has the amino acid sequence: Ac-Phe(1)-Aib-Aib-Aib-Iva-Gly-Leu-Aib(8)-Aib-Hyp-Gln-Iva-Hyp-Aib-Pro-Phl(16). By using the uniformly (13)C,(15)N-labeled sample of Aam-I, the set of conformationally dependent J couplings and (3h)J(NC) couplings through H-bonds were measured. Analysis of these data along with the data on magnetic nonequivalence of the (13)C(beta) nuclei (Deltadelta((13)C(beta))) in Aib and Iva residues allowed us to draw the univocal conclusion that the N-terminal part (Phe(1)-Gly(6)) of Aam-I in MeOH solution is in fast exchange between the right-handed and left-handed 3(10)-helical conformations, with an approximately equal population of both states. An additional conformational exchange process was found at the Aib(8) residue. The (15)N-NMR-relaxation and CD-spectroscopy measurements confirmed these findings. Molecular modeling and Monte Carlo simulations revealed that both exchange processes are correlated and coupled with significant hinge-bending motions around the Aib(8) residue. Our results explain relatively low activity of Aam-I with respect to other 15-amino acid residue peptaibols (for example, zervamicin) in functional and biological tests. The high dynamic 'propensity' possibly prevents both initial binding of the antiamoebin to the membrane and subsequent formation of stable ionic channels according to the barrel-stave mechanism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号