首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97篇
  免费   19篇
  2022年   1篇
  2019年   3篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   7篇
  2014年   6篇
  2013年   3篇
  2012年   9篇
  2011年   3篇
  2010年   2篇
  2009年   5篇
  2008年   3篇
  2007年   3篇
  2006年   7篇
  2005年   2篇
  2004年   2篇
  2003年   4篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1995年   1篇
  1992年   2篇
  1991年   5篇
  1990年   1篇
  1981年   1篇
  1979年   2篇
  1978年   6篇
  1977年   1篇
  1972年   3篇
  1971年   2篇
  1970年   2篇
  1969年   3篇
  1968年   3篇
  1967年   3篇
  1966年   4篇
  1965年   4篇
  1964年   1篇
  1962年   1篇
  1960年   1篇
  1951年   2篇
排序方式: 共有116条查询结果,搜索用时 15 毫秒
1.
2.
Preparation, properties and metabolism of 5,6-monoepoxyretinoic acid   总被引:4,自引:3,他引:1  
1. Methyl retinoate has been converted into methyl 5,6-monoepoxyretinoate by reaction with monoperphthalic acid. The epoxy acid ester on alkaline hydrolysis gave 5,6-monoepoxyretinoic acid. 2. Treatment of the 5,6-monoepoxy compounds with ethanolic hydrochloric acid gave the corresponding 5,8-epoxy (furanoid) compounds. 3. With lithium aluminium hydride, the acid and the ester groups were selectively reduced to primary alcohols. 4. Administration of methyl 5,6-monoepoxyretinoate intraperitoneally and subcutaneously had good growth response in vitamin A-deficient rats. 5. 5,6-Monoepoxyretinoic acid, when given intraperitoneally as the sodium salt, was 157% as active as all-trans-retinyl acetate. 6. Methyl 5,6-monoepoxyretinoate was hydrolysed to the epoxy acid by rat-liver homogenate. It had 35% of the biological activity of all-trans-retinyl acetate in the rat when given orally.  相似文献   
3.
1. Glycoproteins were isolated from the plasma of sheep, goat, cow, buffalo and monkey. They were homogeneous by electrophoresis; on ultracentrifugation, a faster-sedimenting fraction, to an extent of 5–8% only, was observed in each case. 2. Similar physical properties were exhibited by these glycoproteins and they each have a molecular weight of about 105000. 3. In chemical composition, differences have been observed and the glycoproteins can be classified into three groups: (a) sheep and goat glycoproteins; (b) cow and buffalo glycoproteins; (c) monkey glycoprotein. Glucose, galactosamine and N-terminal amino acid were absent from these proteins. 4. These glycoproteins were trypsin inhibitors and prolonged the clotting time of plasma.  相似文献   
4.
The method for the purification of goat serum retinol-binding protein consists of DEAE-cellulose chromatography of the serum followed by preparative polyacrylamide disc gel electrophoresis. After electrophoresis, the retinol-binding protein containing zone is identified by the specific fluorescence of retinol. For raising the antibodies, the portion of the gel containing retinol binding protein is homogenized and injected intradermally and intramuscularly to rabbits. The availability of this simple method for the isolation of retinol-binding protein and production of its antibodies enables the development of a radioimmunoassay for this protein.  相似文献   
5.
6.
Endophytes contribute to plant performance, especially under harsh conditions. We therefore hypothesized that wild plants have retained beneficial endophytes that are less abundant or not present in related crop plants. To test this hypothesis, we selected two endophytes that were found in Sharon goatgrass, an ancestor of wheat, and tested their effect on bread wheat. Both endophytes infected wheat and improved sustainability and performance under water-limited conditions. To determine how the endophytes modify plant development, we measured parameters of plant growth and physiological status and performed a comparative metabolomics analysis. Endophyte-treated wheat plants had reduced levels of stress damage markers and reduced accumulation of stress-adaptation metabolites. Metabolomics profiling revealed significant differences in the response to water stress of endophyte-treated plants compared with untreated plants. Our results demonstrate the potential of endophytes from wild plants for improvement of related crops and show that the beneficial effects of two endophytes are associated with alteration of physiological responses to water-limited conditions.  相似文献   
7.
Previously, we reported that in Citrus plants, nitrate influx through the plasmalemma of roots cells follows a biphasic pattern, suggesting the existence of at least two different uptake systems, a high and low affinity transport system (HATS and LATS, respectively). Here, we describe a novel inducible high affinity transport system (iHATS). This new nitrate transport system has a high capacity to uptake nitrate in two different Citrus rootstocks (Cleopatra mandarin and Troyer citrange). The iHATS was saturable, showing higher affinity than constitutive high affinity transport system (cHATS) to the substrate NO3. The Vmax for this saturable component iHATS was higher than cHATS, reaching similar values in both rootstocks.Additionally, we studied the regulation of root NO3 uptake mediated by both HATS (iHATS and cHATS) and LATS. In both rootstocks, cHATS is constitutive and independent of N-status. Concerning the regulation of iHATS, this system is upregulated by NO3 and down-regulated by the N status and by NO3 itself when plants are exposed to it for a longer period of time. LATS in Cleopatra mandarin and Troyer citrange rootstocks is repressed by the N-status.The use of various metabolic uncouplers or inhibitors indicated that NO3 net uptake mediated by iHATS and LATS was an active transport system in both rootstocks.Key Words: Citrus, inducible high affinity transport system (iHATS), constitutive high affinity transport system (cHATS), nitrate uptake, regulation  相似文献   
8.
Cama E  Emig FA  Ash DE  Christianson DW 《Biochemistry》2003,42(25):7748-7758
Arginase is a binuclear manganese metalloenzyme that hydrolyzes l-arginine to form l-ornithine and urea. The three-dimensional structures of D128E, D128N, D232A, D232C, D234E, H101N, and H101E arginases I have been determined by X-ray crystallographic methods to elucidate the roles of the first-shell metal ligands in the stability and catalytic activity of the enzyme. This work represents the first structure-based dissection of the binuclear manganese cluster using site-directed mutagenesis and X-ray crystallography. Substitution of the metal ligands compromises the catalytic activity of the enzyme, either by the loss or disruption of the metal cluster or the nucleophilic metal-bridging hydroxide ion. However, the substitution of the metal ligands or the reduction of Mn(2+)(A) or Mn(2+)(B) occupancy does not compromise enzyme-substrate affinity as reflected by K(M), which remains relatively invariant across this series of arginase variants. This implicates a nonmetal binding site for substrate l-arginine in the precatalytic Michaelis complex, as proposed based on analysis of the native enzyme structure (Kanyo, Z. F., Scolnick, L. R., Ash, D. E., and Christianson, D. W. (1996) Nature 383, 554-557).  相似文献   
9.
Here the isolation and characterization of CitAMT1 cDNA from citrange Troyer (Citrus sinensis L. OsbeckxPoncirus trifoliata Blanco) is reported, suggesting that this belongs to the AMT gene family, which is involved in the high-affinity transport system (HATS). Results show that in Citrus plants, the HATS is much more dependent on the light conditions and C status of the roots than the low-affinity transport system. Most importantly, a strong correlation was found between the regulation of both HATS activity and CitAMT1 expression. CitAMT1 expression is sucrose-stimulated and may account for the regulation of NH(4)(+) HATS. Furthermore, a similar link was also recorded with photosynthetic activity in the shoots, suggesting that the variations in production and transport of photosynthates to the roots are responsible for the diurnal changes of both CitAMT1 expression and NH(4)(+) HATS activity. On the other hand, results indicate that the effect of stimulating light on CitAMT1 expression and NH(4)(+) HATS activity is independent of the circadian rhythm. Finally, CitAMT1 expression seems to be specifically stimulated by sucrose, suggesting that sucrose is a pivotal signal governing both assimilate partitioning from source organs and assimilate utilization in sink organs.  相似文献   
10.
BACKGROUND: The retinoic acid (RA)-catabolizing enzyme Cyp26a1 plays an important role in protecting tailbud tissues from inappropriate exposure to RA. Cyp26a1-null animals exhibit caudal agenesis and spina bifida, imperforate anus, agenesis of the caudal portions of the digestive and urogenital tracts, and malformed lumbosacral skeletal elements. This phenotype closely resembles the most severe form of caudal agenesis in humans. In view of these findings, we investigated a potential involvement of the human CYP26A1 gene in the pathogenesis of caudal regression syndrome (CRS). METHODS: Mutational screening of 49 CRS patients and 132 controls was performed using denaturing high-performance liquid chromatography and sequencing. Differences in the genotype and allele frequency of each SNP were evaluated by chi(2) analysis. The biological significance of the intronic variants was investigated by transfection assays of mutant constructs and by analysis of the splicing patterns with RT-PCR. RESULTS: Mutational screening allowed us to identify 6 SNPs, 4 of which (447 C>G, 1134 G>A, IVS 1+10 G>C, and IVS 4+8 AG>GA) are new. In addition, we describe a novel 2-site haplotype consisting of the 2 intronic SNPs. Both single-locus and haplotype analyses revealed no association with increased risk for CRS. The consequences of the 2 intronic polymorphisms on the mRNA splicing process were also investigated. Moreover, using functional and computational methods we demonstrated that both of these intronic polymorphisms affect the intron splicing efficiency. CONCLUSIONS: Our research did not provide evidence that CYP26A1 has implications for the pathogenesis of human CRS. However, the relationship between CRS risk and the CYP26A1 genotype requires further study with a larger number of genotyped subjects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号